【算法】树状数组应用

写在前面:

关于原码,反码,补码:

正数:

原 == 反 ==补

负数:

原码略;

反码:第一位(符号位)不变,其他位取反;

补码:反码+1;

举个栗子:-10

原码:10001010;

反码:11110101;

补码:11110110;

树状数组:

ccs:树状数组,顾名思义,就是橡树一样的数组…

树状数组

看这张图就一目了然了。

两个数组:

a[i]储存原序列;
c[i]树状数组;

c[1]存第一个数(如图),
c[2]存前两个数的和,
c[3]存第三个数,
c[4]存前四个数的和...以此类推。

树状数组储存方式独特,其中储存的和的个数为其lowbit值。

举个栗子

c[1]中存了1个数,lowbit(1)=1;

c[2]中存了2个数,lowbit(2)=2;

c[4]中存了4个数,lowbit(4)=4;

而lowbit怎么算呢?(先逃)

树状数组主要包括三个函数

first. 求lowbit值

int lowbit(int x)
{
	return x&(-x);
}

second.给第x个数加k

void update(int x,int k)
{

	while(x<=n)
	{
 		c[x]+=k;
		x+=lowbit(x);
	}
}

third.查询区间和

int getsum(int x)
{
	int sum=0;
	while(x>0)
	{
		sum+=c[x];
		x-=lowbit(x);
	}
	return sum;
}

(手动模拟一下就知道了)

题目

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某一个数加上x

2.求出某区间每一个数的和

输入格式

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3个整数,表示一个操作,具体如下:

操作1: 格式:1 x k 含义:将第x个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式

输出包含若干行整数,即为所有操作2的结果。
#include<iostream>
using namespace std;
int n,m;
int c[510000];
int lowbit(int x)
{
	return x&(-x);
}
void update(int x,int k)//对第x个数加k
{

	while(x<=n)
	{
 		c[x]+=k;
		x+=lowbit(x);
	}
}
int getsum(int x)//求前x项的和
{
	int sum=0;
	while(x>0)
	{
		sum+=c[x];
		x-=lowbit(x);
	}
	return sum;
}
int main()
{
	int a;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>a;
		update(i,a);//建立树状数组
	}
		
	int x,k,z;
	
	for(int i=1;i<=m;i++)
	{
		cin>>z>>x>>k;
		if(z==1)update(x,k);
		if(z==2)
		{
			int u=getsum(k);
			int v=getsum(x-1);
			cout<<u-v<<endl; 
		}
	}
}

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数数加上x

2.求出某一个数的值

输入格式

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含2或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x 含义:输出第x个数的值

输出格式

输出包含若干行整数,即为所有操作2的结果。
#include<iostream>
using namespace std;
int n,m;
int c[510000],c2[510000];
int lowbit(int x)
{
	return x&(-x);
}
void update(int x,int k)
{

	while(x<=n)
	{
 		c[x]+=k;
		x+=lowbit(x);
	}
}
int getsum(int x)
{
	int sum=0;
	while(x>0)
	{
		sum+=c[x];
		x-=lowbit(x);
	}
	return sum;
}
int main()
{
	int a,sum=0;
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>a;
		update(i,a);
		sum+=a;
		c2[i]=sum;//直接用前缀和存原树状数组
	}
	int x,y,z;
	for(int i=1;i<=m;i++)
	{
		cin>>a;
		if(a==1)
		{
			cin>>x>>y>>z;
			update(x,z);
			update(y+1,-z);
		}
		if(a==2)
		{
			cin>>x;
			cout<<getsum(x)-c2[x-1]<<endl;
		}
	}
}

以上,有错误之处欢迎指出~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

404Gloria

你的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值