机器学习实践——预测数值型数据:回归

线性回归过程就是:将输入项乘上一些常量,然后再累加起来,就得到预测值。那么如何找到这些常量呢?

求解这些回归系数的过程就是回归。

根据回归过程,可以得到一般公式:

               Y = wT*x 

现在问题是,我们有x的值和y的值,如何求出向量w的值,常用的方法就是是误差最小的 w,所以采用平方误差

                           

对W进行求导,令其为零,解出W如下:

值得注意的是,上述公式包含对矩阵的求逆,那么如果该矩阵的行列式等于0,就不可逆,所以必须先判断矩阵是否可逆。

注:求解W的方法是统计学常用的方法,称之为最小二乘法(least square)

求解W的代码:

#加载数据
def loadDataSet(filename):
    fr = open(filename)
    numFeat = len(fr.readline().strip().split('\t')) - 1
    dataMat = []; labelMat = []
    for line in fr.readlines():
        lineArr = []
        currLine = line.strip().split('\t')
        for i in range(numFeat):
          lineArr.append(float(currLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(currLine[-1]))
    return  dataMat,labelMat

#计算W
def standRegers(xArr,yArr):
    #首先转换为矩阵,方便计算
    xMat = mat(xArr)
    yMat = mat(yArr).T
    xTx = xMat.T * xMat
    #判断矩阵的行列式是否为0
    if linalg.det(xTx) == 0.0:
        print "这个矩阵没有逆矩阵"
        return
    #求出W
    ws = xTx.I * (xMat.T * yMat)
    return ws

通过matplotlib将数据可视化,并画出最佳拟合直线

#加载数据
xArr, yArr = loadDataSet('Ch08/ex0.txt')
ws = standRegers(xArr,yArr)
#转换为矩阵
xMat = mat(xArr)
yMat = mat(yArr)
#预测的y值
yHat = xMat*ws
fig = plt.figure()
axes = fig.add_subplot(111)
axes.scatter(xMat[:,1].flatten().
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值