如果算法里面只有加减法,则算法时间算加减法的次数。
如果算法里面包含加法和乘法,则算法时间一般只算乘法次数,因为计算机计算加减法很快,可忽略。
问题:什么是好的算法?
一个程序的运行时间,依赖与算法的好坏和问题的输入规模,问题的输入规模是指输入量的多少。
算法效率
- 最坏情况复杂度Tworst(n)T_{worst(n)}Tworst(n)
- 平均复杂度Tavg(n)T_{avg}(n)Tavg(n)
Tavg(n)≤Tworst(n)
T_{avg(n)}\leq T_{worst}(n)
Tavg(n)≤Tworst(n)
除非特别指定,一般关心最坏情况的复杂度。
问题:怎么分析算法的复杂度?
不计循环索引的递增和循环终止条件、变量声明、打印结果等操作。
测定运行时间的方法:计算对运行时间由消耗的基本操作的执行次数。运行时间与这个计数成正比。
分析算法的运行时间:把基本操作的数量与输入规模关联起来,即基本操作的数量必须表示成输入规模的函数。
判断一个算法的效率时,函数中的常数和其他次要项常常可以忽略,而更应该关注主项(最高阶项)的阶数。
只需要关注随着处理的数据的规模的增大,算法复杂度的增长趋势。
在进行算法分析时,语句总的执行次数T(n)T(n)T(n)是关于问题规模n的函数,进而分析T(n)T(n)T(n)随n的变化情况并确定T(n)T(n)T(n)的数量级。算法的时间复杂度,记作:T(n)=O(f(n))T(n)=O(f(n))T(n)=O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)f(n)f(n)的增长率相同,称作算法的渐近时间复杂度。其中f(n)f(n)f(n)是问题规模n的某个函数。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶项。
- 如果最高阶项存在且不是1,则去除与这个项相乘的常数。
得到的结果就是大O阶。
时间复杂度的渐进表示法
- T(n)=O(f(n))T(n)=O(f(n))T(n)=O(f(n))表示存在常数C>0C>0C>0,n0>0n_0>0n0>0使得当n≥n0n\geq n_0n≥n0时有T(n)≤C⋅f(n)T(n)\leq C·f(n)T(n)≤C⋅f(n)
- T(n)=Ω(g(n))T(n)=\Omega(g(n))T(n)=Ω(g(n))表示存在常数C>0C>0C>0,n0>0n_0>0n0>0使得当n≥n0n\geq n_0n≥n0时有T(n)≥C⋅g(n)T(n)\geq C·g(n)T(n)≥C⋅g(n)
- T(n)=θ(h(n))T(n)=\theta(h(n))T(n)=θ(h(n))表示同时有T(n)=O(h(n))T(n)=O(h(n))T(n)=O(h(n))和T(n)=Ω(h(n))T(n)=\Omega(h(n))T(n)=Ω(h(n))成立
O(f(n))O(f(n))O(f(n))可有无数种表达方式,一般取最小的上界
Ω(g(n))\Omega(g(n))Ω(g(n))可有无数种表达方式,一般取最大的上界
空间复杂度和时间复杂度同理
时间复杂度分析小窍门
- 若两段算法分别有复杂度T1(n)=O(f1(n))T_1(n)=O(f_1(n))T1(n)=O(f1(n))和T2(n)=O(f2(n))T_2(n)=O(f_2(n))T2(n)=O(f2(n)),则
T1(n)+T2(n)=max(O(f1(n)),O(f(n)))T_1(n)+T_2(n)=max(O(f_1(n)), O(f(n)))T1(n)+T2(n)=max(O(f1(n)),O(f(n)))
T1(n)+T2(n)=O(f1(n)×f2(n))T_1(n)+T_2(n)=O(f_1(n)\times f_2(n))T1(n)+T2(n)=O(f1(n)×f2(n)) - 若T(n)T(n)T(n)是关于n的k阶多项式,则T(n)=θ(nk)T(n)=\theta(n^k)T(n)=θ(nk)
- 一个for循环的时间复杂度等于循环次数乘以循环体代码的复杂度
- if-else结构的复杂度取决于if的条件判断复杂度和两个分枝部分的复杂度,总复杂度取三者中最大