分类错误率
最小错误率贝叶斯决策
样本xxx的错误率: 任一决策都可能会有错误。
P(error∣x)={
P(w2∣x),if we decide x as w1P(w1∣x),if we decide x as w2 P(\text{error}|\mathbf{x})=\begin{cases} P(w_2|\mathbf{x}), & \text{if we decide } \mathbf{x} \text{ as } w_1\\ P(w_1|\mathbf{x}), & \text{if we decide } \mathbf{x} \text{ as } w_2 \end{cases} P(error∣x)={
P(w2∣x),P(w1∣x),if we decide x as w1if we decide x as w2
P(w2∣x)P(w_2|x)P(w2∣x)即:当我们将样本xxx判定为第一类w1w_1w1时,这个判定失误的概率为P(w2∣x)P(w_2|x)P(w2∣x);(因为样本以该概率属于第二类)
样本xxx的最小错误率:
P(error∣x)=min(P(ω1∣x),P(ω2∣x)) P(\text{error}|\mathbf{x})=\min(P(\omega_1|\mathbf{x}),P(\omega_2|\mathbf{x})) P(error∣x)=min(P(ω1∣x),P(ω2∣x))
贝叶斯决策的错误率:贝叶斯决策的错误率定义为所有服从独立同分布的样本上的错误率的期望:
P(error)=∫P(error∣x)p(x)dx P(\text{error})=\int P(\text{error}|\mathbf{x})p(\mathbf{x})dx P(error)=∫P(error∣x)p(x)dx
例:错误率(1D)
关于错误率,以一维为例说明: 考虑一个有关一维样本的两类分类问题。假设决策边界ttt将xxx轴分成两个区域R1R_1R1和R2R_2R2。R1R_1R1为(−∞,t)(-\infty,t)(−∞,t),R2R_2R2为(t,∞)(t,\infty)(t,∞)。
错误情形:样本在R1R_1R1中,但属于第二类的概率是存在的,即P(w2∣x)P(w_2|\mathbf{x})P(w2∣x);样本在R2R_2R2中,但属于第一类的概率也是存在的,即P(w1∣x)P(w_1|\mathbf{x})P(w1∣x);这两种情形就是决策一个给定样本xxx可能出现错误的概率。
考虑样本自身的分布后的平均错误率计算如下:
P(error)=∫−∞tP(w2∣x)p(x)dx+∫t∞P(w1∣x)p(x)dx=∫−∞tP(x∣w2)P(w2)dx+∫t∞=P(x∈R1,w2)+P(x∈R2,w1) \begin{align}P(\text{error})&=\int_{-\infty}^{t}P(w_2|\mathbf{x})p(\mathbf{x})d\mathbf{x}+\int_{t}^{\infty}P(w_1|x)p(\mathbf{x})d\mathbf{x}\\ &=\int_{-\infty}^{t}P(\mathbf{x}|w_2)P(w_2)d\mathbf{x}+\int_{t}^{\infty}\\ &= P(\mathbf{x}\in R_1,w_2)+P(\mathbf{x}\in R_2,w_1) \end{align} P(error)=∫−∞tP(w2∣x)p(x)dx+∫t∞P(w1∣x)p(x)dx=∫−∞tP(x∣w2)P(w2)dx+∫t∞=P(x∈R1,w2)+P(x∈R2,w1)
两类情形
平均错分概率:
P(error)=P(x∈R2,w1)+P(x∈R1,w2)=∫R2p(x∣w1)P(w1)dx+∫R1p(x∣w2)P(w2)dx=P(x∈R2∣w1)P(w1)+P(x∈R1∣w2)P(w2) P(\text{error})=P(\mathbf{x}\in R_2,w_1)+P(\mathbf{x}\in R_1,w_2)\\ =\int_{R_2}p(\mathbf{x}|w_1)P(w_1)d\mathbf{x}+\int_{R_1}p(\mathbf{x}|w_2)P(w_2)d\mathbf{x}\\ =P(\mathbf{x}\in R_2|w_1)P(w_1)+P(\mathbf{x}\in R_1|w_2)P(w_2) P(error)=P(x∈R2,w1)+P(x∈R1,w2)=∫R2p(x∣w1)P(w1)dx+∫R1p(x∣w2)P(w2)dx=P(x∈R2∣w1)P(w1)+P(x∈R1∣