蓝桥杯 ADV-360 高精度减法(试题解析)

本文详细介绍了一种解决大整数减法问题的算法实现,通过将整数转换为向量进行位运算,实现了高精度的减法计算,并附带完整的代码示例。

试题 算法提高 高精度减法

提交此题   评测记录  

资源限制

时间限制:1.0s   内存限制:256.0MB

问题描述

  高精度减法

输入格式

  两行,表示两个非负整数a、b,且有a > b。

输出格式

  一行,表示a与b的差

样例输入

1234567890987654321

9999

样例输出

1234567890987644322

解题思路:模拟。

AC代码如下:

#include <iostream>
#include <vector>
#include <string.h>

using namespace std;

vector<int>    A;
vector<int>    B;


int main(int argc, char** argv) {
    
    string a,b;    //a>b 
    
    cin>>a>>b;
    
    int Alen=a.size(),Blen=b.size();
    //获取a的高精度 向量 
    for(int i=Alen-1;i>=0;i--){
        int tmp=a[i]-'0';
        A.push_back(tmp);
    }
    
    //获取b的高精度 向量 
    for(int i=Blen-1;i>=0;i--){
        int tmp=b[i]-'0';
        B.push_back(tmp);
    }
    
    //A-B
    for(int i=0;i<Blen;i++){
        if(A[i]<B[i]){
            A[i]+=10;
            A[i+1]--;
        }
        A[i]-=B[i];
    }
    
    //校验 
    for(int i=0;i<Alen;i++){
        if(A[i]<0){
            A[i]+=10;
            A[i+1]--;
        }
    }
    
    //清除高位的0 
    for(int i=A.size()-1;i>=0;i--){
        if(A[i]==0){
            A.pop_back();
        }
        else
            break;
    }
    
    for(int i=A.size()-1;i>=0;i--){
        cout<<A[i];
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值