Problem Description
给定序列A={A1,A2,…,An}, 要求改变序列A中的某些元素,形成一个严格单调的序列B(严格单调的定义为:Bi<Bi+1,1≤i<N)。
我们定义从序列A到序列B变换的代价为cost(A,B)=max(|Ai−Bi|)(1≤i≤N)。
请求出满足条件的最小代价。
注意,每个元素在变换前后都是整数。
Input
第一行为测试的组数T(1≤T≤10).
对于每一组:
第一行为序列A的长度N(1≤N≤105),第二行包含N个数,A1,A2,…,An.
序列A中的每个元素的值是正整数且不超过106。
Output
对于每一个测试样例,输出两行:
第一行输出:“Case #i:”。i代表第 i 组测试数据。
第二行输出一个正整数,代表满足条件的最小代价。
Sample Input
2
2
1 10
3
2 5 4
Sample Output
Case #1:
0
Case #2:
1
题目大意:
改变序列中元素的值,使得序列成为升序序列,结果为元素改变前后差值的最大值(取绝对值)
思路:
枚举+二分+贪心,枚举可能符合的值,最后确定最佳的值
枚举时可以采用二分法,在验证枚举的值是否符合时用到了贪心的思想
具体思路见代码注释:
#include <bits/stdc++.h>
using namespace std;
//贪心算法,b[i]要在符合b[i]>b[i-1]的情况下尽可能小
//solve()函数用于验证该值是否符合
bool solve(int a[],int b[],int mid,int k)
{
b[0]