22. Generate Parentheses

本文介绍了生成有效括号组合的三种算法:暴力法、回溯法及闭合数法。重点解析了每种方法的工作原理、实现代码及复杂度分析。回溯法尤其直观易懂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

 

 

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

For example, given n = 3, a solution set is:

[
  "((()))",
  "(()())",
  "(())()",
  "()(())",
  "()()()"
]

 

Approach 1: Brute Force

Intuition

We can generate all 2^{2n}​​ sequences of '(' and ')' characters. Then, we will check if each one is valid.

Algorithm

To generate all sequences, we use a recursion. All sequences of length n is just '(' plus all sequences of length n-1, and then ')' plus all sequences of length n-1.

To check whether a sequence is valid, we keep track of balance, the net number of opening brackets minus closing brackets. If it falls below zero at any time, or doesn't end in zero, the sequence is invalid - otherwise it is valid.

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> combinations = new ArrayList();
        generateAll(new char[2 * n], 0, combinations);
        return combinations;
    }

    public void generateAll(char[] current, int pos, List<String> result) {
        if (pos == current.length) {
            if (valid(current))
                result.add(new String(current));
        } else {
            current[pos] = '(';
            generateAll(current, pos+1, result);
            current[pos] = ')';
            generateAll(current, pos+1, result);
        }
    }

    public boolean valid(char[] current) {
        int balance = 0;
        for (char c: current) {
            if (c == '(') balance++;
            else balance--;
            if (balance < 0) return false;
        }
        return (balance == 0);
    }
}

def generateParenthesis(self, N):
    if N == 0: return ['']
    ans = []
    for c in xrange(N):
        for left in self.generateParenthesis(c):
            for right in self.generateParenthesis(N-1-c):
                ans.append('({}){}'.format(left, right))
    return ans

Complexity Analysis

  • Time Complexity : O(2^{2n}n). For each of 2^{2n} sequences, we need to create and validate the sequence, which takes O(n) work.

  • Space Complexity : O(2^{2n}n). Naively, every sequence could be valid. See Approach 3 for development of a tighter asymptotic bound. 

 

Approach 2: Backtracking

Intuition and Algorithm

Instead of adding '(' or ')' every time as in Approach 1, let's only add them when we know it will remain a valid sequence. We can do this by keeping track of the number of opening and closing brackets we have placed so far.

We can start an opening bracket if we still have one (of n) left to place. And we can start a closing bracket if it would not exceed the number of opening brackets.

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> ans = new ArrayList();
        backtrack(ans, "", 0, 0, n);
        return ans;
    }

    public void backtrack(List<String> ans, String cur, int open, int close, int max){
        if (str.length() == max * 2) {
            ans.add(cur);
            return;
        }

        if (open < max)
            backtrack(ans, cur+"(", open+1, close, max);
        if (close < open)
            backtrack(ans, cur+")", open, close+1, max);
    }
}

 Complexity Analysis

Our complexity analysis rests on understanding how many elements there are in generateParenthesis(n). This analysis is outside the scope of this article, but it turns out this is the n-th Catalan number \dfrac{1}{n+1}\binom{2n}{n}, which is bounded asymptotically by \dfrac{4^n}{n\sqrt{n}}​.

  • Time Complexity : O(\dfrac{4^n}{\sqrt{n}}). Each valid sequence has at most n steps during the backtracking procedure.

  • Space Complexity : O(\dfrac{4^n}{\sqrt{n}}), as described above, and using O(n) space to store the sequence. 

 

Approach 3: Closure Number

Intuition

To enumerate something, generally we would like to express it as a sum of disjoint subsets that are easier to count.

Consider the closure number of a valid parentheses sequence S: the least index >= 0 so that S[0], S[1], ..., S[2*index+1] is valid. Clearly, every parentheses sequence has a unique closure number. We can try to enumerate them individually.

Algorithm

For each closure number c, we know the starting and ending brackets must be at index 0 and 2*c + 1. Then, the 2*c elements between must be a valid sequence, plus the rest of the elements must be a valid sequence.

class Solution {
    public List<String> generateParenthesis(int n) {
        List<String> ans = new ArrayList();
        if (n == 0) {
            ans.add("");
        } else {
            for (int c = 0; c < n; ++c)
                for (String left: generateParenthesis(c))
                    for (String right: generateParenthesis(n-1-c))
                        ans.add("(" + left + ")" + right);
        }
        return ans;
    }
}

Complexity Analysis

  • Time and Space Complexity : O(\dfrac{4^n}{\sqrt{n}}). The analysis is similar to Approach 2.

 

Summary:

个人来说比较好理解的还是第二种回溯解法。

 

#include <cassert> /// for assert #include <iostream> /// for I/O operation #include <vector> /// for vector container /** @brief Backtracking algorithms @namespace backtracking / namespace backtracking { /* @brief generate_parentheses class */ class generate_parentheses { private: std::vectorstd::string res; ///< Contains all possible valid patterns void makeStrings(std::string str, int n, int closed, int open); public: std::vectorstd::string generate(int n); }; /** @brief function that adds parenthesis to the string. @param str string build during backtracking @param n number of pairs of parentheses @param closed number of closed parentheses @param open number of open parentheses */ void generate_parentheses::makeStrings(std::string str, int n, int closed, int open) { if (closed > open) // We can never have more closed than open return; if ((str.length() == 2 * n) && (closed != open)) { // closed and open must be the same return; } if (str.length() == 2 * n) { res.push_back(str); return; } makeStrings(str + ')', n, closed + 1, open); makeStrings(str + '(', n, closed, open + 1); } /** @brief wrapper interface @param n number of pairs of parentheses @return all well-formed pattern of parentheses */ std::vectorstd::string generate_parentheses::generate(int n) { backtracking::generate_parentheses::res.clear(); std::string str = “(”; generate_parentheses::makeStrings(str, n, 0, 1); return res; } } // namespace backtracking /** @brief Self-test implementations @returns void */ static void test() { int n = 0; std::vectorstd::string patterns; backtracking::generate_parentheses p; n = 1; patterns = {{“()”}}; assert(p.generate(n) == patterns); n = 3; patterns = {{“()()()”}, {“()(())”}, {“(())()”}, {“(()())”}, {“((()))”}}; assert(p.generate(n) == patterns); n = 4; patterns = {{“()()()()”}, {“()()(())”}, {“()(())()”}, {“()(()())”}, {“()((()))”}, {“(())()()”}, {“(())(())”}, {“(()())()”}, {“(()()())”}, {“(()(()))”}, {“((()))()”}, {“((())())”}, {“((()()))”}, {“(((())))”}}; assert(p.generate(n) == patterns); std::cout << “All tests passed\n”; } /** @brief Main function @returns 0 on exit */ int main() { test(); // run self-test implementations return 0; } 在这段代码的基础上为C++初学者出几个练习题?
最新发布
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值