HDU 4991 Ordered Subsequence(dp+树状数组)

DP算法优化与树状数组的应用
本文深入探讨了动态规划算法中递推公式的优化方法,特别关注于如何利用树状数组(线段树)解决复杂度为n^2*k的问题。通过实例展示了将三层循环优化为更高效的算法实现过程。

好题啊。  自己想的dp。


dp【i】【j】 代表第i个数时  递增长度为 j 的个数。 


明显 d【i】【j】 = sum(d【k】【j-1】 && num【k】 < num【i】)


但是写暴力的话 需要三层循环  n^2*k 的复杂度。 肯定超时。


递推公式有个特点。 到达每一项之后 都是前面项数的和。  所以需要用树状数组优化。(正好是求前缀和)


#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <map>
#include <vector>
#include <set>
#include <queue>
#include <stack>
#include <cctype>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 10000+10
#define INF (1<<30)
#define mod 123456789
int c[MAXN];
int n,k;
int lowbit(int x)
{
    return x & (-x);
}

void update(int pos,LL val)
{
    while(pos <= n)
    {
        c[pos] = (c[pos]+ val)%mod;
        pos += lowbit(pos);
    }
}

LL Sum(int pos)
{
    LL res = 0;
    while(pos > 0)
    {
        res = (res+c[pos])%mod;
        pos -= lowbit(pos);
    }
    return res;
}
LL d[MAXN][101];
LL a[MAXN];
LL b[MAXN];
int main (){
    while(scanf("%d%d",&n,&k) != EOF){
        for(int i = 1; i <= n; i++){
            scanf("%I64d",&a[i]);
            b[i] = a[i];
        }
        memset(d,0,sizeof(d));
        for(int i = 1; i <= n; i++){
            d[i][1] = 1;
        }
        sort(b+1,b+1+n);
        LL ans = 0;
        for(int i = 2; i <= k; i++){
            memset(c,0,sizeof(c));
            for(int j = 1; j <= n; j++){
                int id = lower_bound(b+1,b+1+n,a[j]) - (b); //  自己的编号(相当于离散化,因为数据原本很大,这样可以缩小到1-10000)
                d[j][i] = Sum(id-1);   // 求 小于 a[j] 的 所有数 长度为 i-1的和。
                update(id,d[j][i-1]);  // 把 c 数组的 id位置更新成 d[j][i-1] 以便于 下一个 数字的时候 求和
            }
        }
        LL sum = 0;
        for(int j = 1; j <= n; j++){
            sum = (sum+d[j][k])%mod;
        }
        printf("%I64d\n",sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值