目录
1.4.2.1 情况一: cur为红,p为红,g为黑,u存在且为红
1.4.2.2 情况二: cur为红(插入在两边),p为红,g为黑,u不存在/u存在且为黑
1.4.2.3 情况三: cur为红(插入在中间),p为红,g为黑,u不存在/u存在且为黑
前言
红黑树涉及旋转,旋转部分讲解在:C++ AVL树(详解 完整代码)-CSDN博客
一、红黑树
1.1 红黑树的概念
红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路 径会比其他路径长出俩倍,因而是接近平衡的。
1.2 红黑树的性质
1. 每个结点不是红色就是黑色
2. 根节点是黑色的
3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点
5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
1.3 红黑树节点的定义
template<class T,class V>
// 这里也可以用struct
// struct默认是公有的,class默认私有所以加上public
class RBTreeNode
{
public:
RBTreeNode* _pLeft;
RBTreeNode* _pRight;
RBTreeNode* parent;
pair<T, V> _kv;
colour col;
RBTreeNode(const pair<T, V>& kv)
:_pLeft(nullptr)
, _pRight(nullptr)
, parent(nullptr)
, _kv(kv)
, col(RED)
{}
};
在节点的定义中,为什么要将节点的默认颜色给成红色的?
因为插入一个红色结点 只影响当前路径,插入黑色这条路径的黑色节点数量变化,那么为了满足条件,别得路径也要修改,极其麻烦
1.4 红黑树的插入操作
红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:
1.4.1 按照二叉搜索的树规则插入新节点
if (_root == nullptr)
{
_root = new Node(kv);
_root->col = BLACK;
return true;
}
// 不为空,先找到插入节点
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_pRight;
}
else if(cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_pLeft;
}
else
{
return false;
}
}
// 插入新节点(初始化为红色)并连接
cur = new Node(kv);
cur->col = RED;
cur->parent = parent;
if (cur->_kv.first < parent->_kv.first)
{
parent->_pLeft = cur;
}
else
{
parent->_pRight = cur;
}
1.4.2 检测新节点插入后,红黑树的性质是否造到破坏
因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连 在一起的红色节点,此时需要对红黑树分情况来讨论:
约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点
1.4.2.1 情况一: cur为红,p为红,g为黑,u存在且为红
如果g是根节点,调整完成后,需要将g改为黑色如果
g是子树,g一定有双亲,且g的双亲如果是红色,需要继续向上调整 (此时g相当于cur)
解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。
1.4.2.2 情况二: cur为红(插入在两边),p为红,g为黑,u不存在/u存在且为黑
说明: u的情况有两种
1.如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点则cur和p一定有一个节点的颜色是黑色,就不满足性质(4):每条路径黑色节点个数相同。
2.如果u节点存在,则其一定是黑色的,那么cur节点原来的颜色一定是黑色的现在看到其是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成红色。
解决方法:
p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,
p为g的右孩子,cur为p的右孩子,则进行左单旋转
然后 p、g变色--p变黑,g变红
1.4.2.3 情况三: cur为红(插入在中间),p为红,g为黑,u不存在/u存在且为黑
解决方法:
p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
p为g的右孩子,cur为p的左孩子,则针对p做右单旋转
此时就变成了情况2
1.4.2.4 总结
// 如果为空树,创建新节点即可
// 情况1: cur为红,parent为红,g为黑,u存在且为红
// 情况2: cur为红(插入在两边),parent为红,g为黑,u不存在/u存在且为黑
// 情况3: cur为红(插入在中间),p为红,g为黑,u不存在/u存在且为黑
// 情况 二三可以合并 分为u不存在/u存在且为黑
// 总结:所以都只需要判断Uncle存不不在,若存在是红还是黑皆可以了
// 因此分为p在g的左还是右,在判断Uncle存不不在
解释:
if(父亲在祖父的左) { if(u存在且为红,为情况1) //下面为情况2和3 else (u不存在,u存在为黑) { if(插入在父亲的左:右旋) if(插入在父亲的右:左右双旋) } } if(父亲在祖父的右) { if(u存在且为红,为情况1) //下面为情况2和3 else (u不存在,u存在为黑) { if(插入在父亲的右:左旋) if(插入在父亲的左:右左双旋) } }
二、红黑树完整代码以及验证
红黑树的检测分为两步:
1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
2. 检测其是否满足红黑树的性质
#pragma once
enum colour
{
RED,
BLACK
};
template<class T,class V>
class RBTreeNode
{
public:
RBTreeNode* _pLeft;
RBTreeNode* _pRight;
RBTreeNode* parent;
pair<T, V> _kv;
colour col;
RBTreeNode(const pair<T, V>& kv)
:_pLeft(nullptr)
, _pRight(nullptr)
, parent(nullptr)
, _kv(kv)
, col(RED)
{}
};
template<class T, class V>
class RBTree
{
typedef RBTreeNode<T,V> Node;
public:
// 在红黑树中插入值为data的节点,插入成功返回true,否则返回false
// 注意:为了简单起见,本次实现红黑树不存储重复性元素
bool Insert(const pair<T, V>& kv)
{
// 如果为空树,创建新节点即可
// 情况1: cur为红,parent为红,g为黑,u存在且为红
// 情况2: cur为红(插入在两边),parent为红,g为黑,u不存在/u存在且为黑
// 情况3: cur为红(插入在中间),p为红,g为黑,u不存在/u存在且为黑
// 情况 二三可以合并 分为u不存在/u存在且为黑
if (_root == nullptr)
{
_root = new Node(kv);
_root->col = BLACK;
return true;
}
// 不为空,先找到插入节点
Node* cur = _root;
Node* parent = nullptr;
while (cur)
{
if (cur->_kv.first < kv.first)
{
parent = cur;
cur = cur->_pRight;
}
else if(cur->_kv.first > kv.first)
{
parent = cur;
cur = cur->_pLeft;
}
else
{
return false;
}
}
// 插入新节点(初始化为红色)并连接
cur = new Node(kv);
cur->col = RED;
cur->parent = parent;
if (cur->_kv.first < parent->_kv.first)
{
parent->_pLeft = cur;
}
else
{
parent->_pRight = cur;
}
// 如果p为黑,在他下面直接插入红就结束了
if (parent->col == BLACK)
{
return true;
}
// 其余为p为红,两个红色相连,需要变更颜色
// 父亲不存在也就是说,更新到根了,不需要在更新了,
while (parent && parent->col == RED)
{
// 情况1: cur为红(插入在两边中间都可以),parent为红,g为黑,u存在且为红
// 解决方式将p 和 U变为黑色,g变为红色,然后将 cur = g 继续向上更新颜色
// 由于p为红,g一定为黑,
// 情况二: cur为红,p为红,g为黑,u不存在 / u存在且为黑
// 若uncle不存在,则cur就是新增节点
// 总结:所以都只需要判断Uncle存不不在,若存在是红还是黑皆可以了
// 因此分为p在g的左还是右,在判断Uncle存不不在
Node* grandfather = parent->parent;
if (parent == grandfather->_pLeft)
{
// g
// p u
// c (C)
Node* uncle = grandfather->_pRight;
// 情况1: cur为红(插入在两边中间都可以),parent为红,g为黑,u存在且为红
// 解决方式将p 和 U变为黑色,g变为红色,然后将 cur = g 继续向上更新颜色
// 由于p为红,g一定为黑,
if (uncle && uncle->col == RED)
{
// 变色
uncle->col = BLACK;
parent->col = BLACK;
grandfather->col = RED;
// 继续往上更新处理
cur = grandfather;
parent = cur->parent;
}
// 情况二: cur为红,p为红,g为黑,u不存在 / u存在且为黑
else
{
if (cur == parent->_pLeft)
{
// 单旋
// g
// p
// c
RotateR(grandfather);
parent->col = BLACK;
grandfather->col = RED;
}
else
{
// 双旋
// g
// p
// c
RotateL(parent);
RotateR(grandfather);
cur->col = BLACK;
grandfather->col = RED;
}
//情况二不需要更新,旋转变色后,并没有改变路径上黑色结点的数量
// 跳出循环
break;
}
}
else if(parent == grandfather->_pRight)
{
// g
// u p
// (c) c
// 情况1: cur为红(插入在两边中间都可以),parent为红,g为黑,u存在且为红
// 解决方式将p 和 U变为黑色,g变为红色,然后将 cur = g 继续向上更新颜色
// 由于p为红,g一定为黑,
Node* uncle = grandfather->_pLeft;
if (uncle && uncle->col == RED)
{
// 变色
parent->col = uncle->col = BLACK;
grandfather->col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->parent;
}
// 情况二: cur为红,p为红,g为黑,u不存在 / u存在且为黑
else
{
// g
// u p
// c
//
if (cur == parent->_pRight)
{
RotateL(grandfather);
parent->col = BLACK;
grandfather->col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->col = BLACK;
grandfather->col = RED;
}
// 情况二不需要更新, 旋转变色后, 并没有改变路径上黑色结点的数量
// 跳出循环
break;
}
}
}
// while结束以后
// 以防更新到根,且把根变为了红色,直接把根变黑即可
_root->col = BLACK;
return true;
}
// 检测红黑树中是否存在值为data的节点,存在返回该节点的地址,否则返回nullptr
Node* Find(const T& data)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < data)
{
cur = cur->_pRight;
}
else
{
cur = cur->_pLeft;
}
}
return cur;
}
// 获取红黑树最左侧节点
Node* LeftMost()
{
Node* cur = _root;
while (cur->_pLeft)
{
cur = cur->_pLeft;
}
return cur;
}
// 获取红黑树最右侧节点
Node* RightMost()
{
Node* cur = _root;
while (cur->_pRight)
{
cur = cur->_pRight;
}
return cur;
}
//检测红黑树是否为有效的红黑树,注意:其内部主要依靠_IsValidRBTRee函数检测
bool IsValidRBTRee()
{
if (_root == nullptr)
return true;
//根必须为黑色
if (_root->col == RED)
return false;
//参考值,选择最左边路径,
// 因为每条路径黑色节点数量一样,
// 用这条路径的数量与其他路径的数量对比即可
int refVal = 0;
Node* cur = _root;
while (cur)
{
if (cur->col == BLACK)
++refVal;
cur = cur->_pLeft;
}
int blacknum = 0;
return _IsValidRBTRee(_root, blacknum, refVal);
}
private:
bool _IsValidRBTRee(Node* pRoot, size_t blackCount, size_t pathBlack)
{
if (pRoot == nullptr)
{
if (blackCount != pathBlack)
{
cout << "存在黑色节点数量不相等的路径" << endl;
return false;
}
return true;
}
// 判断是否有连续的红结点
// 父亲找孩子有两个方向比较麻烦
// 用孩子找父亲只有一个方向
if (pRoot->col == RED && pRoot->parent->col == RED)
{
cout << "有连续的红色节点" << endl;
return false;
}
if (pRoot->col == BLACK)
{
++blackCount;
}
return _IsValidRBTRee(pRoot->_pLeft, blackCount, pathBlack)
&& _IsValidRBTRee(pRoot->_pRight, blackCount, pathBlack);
}
// 左单旋
void RotateL(Node* pParent)
{
Node* subR = pParent->_pRight;
Node* subRL = subR->_pLeft;
pParent->_pRight = subRL;
subR->_pLeft = pParent;
subR->parent = pParent->parent;
pParent->parent = subR;
if (subRL)
subRL->parent = pParent;
if (pParent == _root)
_root = subR;
else
{
if (subR->parent->_pLeft == pParent)
{
subR->parent->_pLeft = subR;
}
else
{
subR->parent->_pRight = subR;
}
}
}
// 右单旋
void RotateR(Node* pParent)
{
Node* subL = pParent->_pLeft;
Node* subLR = subL->_pRight;
pParent->_pLeft = subLR;
subL->_pRight = pParent;
subL->parent = pParent->parent;
pParent->parent = subL;
if (subLR)
subLR->parent = pParent;
if (pParent == _root)
_root = subL;
else
{
if (subL->parent->_pLeft == pParent)
{
subL->parent->_pLeft = subL;
}
else
{
subL->parent->_pRight = subL;
}
}
}
// 为了操作树简单起见:获取根节点
Node*& GetRoot()
{
return _root;
}
private:
Node* _root = nullptr;
};
2.2 红黑树的删除
有兴趣的同学可参考:《算法导论》或者《STL源码剖析》
三、红黑树与AVL树的比较
红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O($log_2 N$),红黑树不追 求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数, 所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。
五、 红黑树的应用
1. C++ STL库 -- map/set、mutil_map/mutil_set
2. Java 库
3. linux内核
4. 其他一些库
拓展
红黑树模拟实现STL中的map与set