转自 https://www.pythontab.com/html/2018/pythonhexinbiancheng_1026/1369.html
前言
最近 Python 之父 Guido van Rossum(龟爷)终于在 Python 官方邮件组落实了 Python 2.7 的终焉之日(EOL)。
说的是 Python 2.7 的 EOL 日期最终确定为 2020 年 1 月 1 日,之后不会有任何更新,包括源码的安全补丁。
所以兼容Python3已经可以说非常必要了,但有些常用的库还没有升级到Python3,所以我们看下如何写出兼容2和3的代码。
Python 2 or 3 ?
Python 3 被钦定为 Python 的未来,于 2008 年末发布,是目前正在开发的版本。旨在解决和修正 Python 2 遗留的设计缺陷、清理代码库冗余、追求有且仅有一种最佳实践方式来执行任务等问题。
起初,由于 Python 3 不能向后兼容的事实,导致了用户采用缓慢,对初学者不友好等问题。但在 Python 社区的努力和决绝态度下,截至龟爷发出邮件之前,已经有了 21903 个 Packages 可以支持 Python 3.5,其中包括了绝大多数最受欢迎的封装库,与此同时也有越来越多的封装库(e.g. Django、Numpy)表示其新版本将不再支持 Python 2。
Python 2.7 于 3.0 之后的 2010 年 7 月 3 日发布,计划作为 2.x 的最后一个版本。Python 2.7 的历史任务在于通过提供 2 和 3 之间的兼容性措施,使 Python 2.x 的用户更容易将代码移植到 Python 3.x 上。那么如果你希望自己的代码能够兼容两个不同的版本,首先你起码要让代码能够正常的运行在 Python 2.7 上。
注:下文使用 P2 表示 Python 2.7;使用 P3 表示 Python 3.x。
不同与兼容
__future__ 模块是我们首先需要了解的,该模块最主要的作用是支持在 P2 中导入那些在 P3 才生效的模块和函数。是一个非常优秀的兼容性工具库,在下文中给出的许多 兼容技巧 实例都依赖于它。
特性 在此版本可选 在此版本内置 效果
nested_scopes 2.1.0b1 2.2 PEP 227:静态嵌套作用域
generators 2.2.0a1 2.3 PEP 255:简单生成器
division 2.2.0a2 3.0 PEP 238:除法操作符改动
absolute_import 2.5.0a1 3.0 PEP 328:Imports 多行导入与绝对相对路径
with_statement 2.5.0a1 2.6 PEP 343:with 语句
print_function 2.6.0a2 3.0 PEP 3105:print 语句升级为函数
unicode_literals 2.6.0a2 3.0 PEP 3112:Bytes 类型
(__future__ 功能列表)
统一不等于语法
P2 支持使用 <> 和 != 表示不等于。
P3 仅支持使用 != 表示不等于。
兼容技巧:
统一使用 != 语法
统一整数类型
P2 中整数类型可以细分为短整型 int 和长整型 long。
P3 废除了短整型,并统一使用 int 表示长整型(不再有 L 跟在 repr 后面)。
兼容技巧:
1 2 3 4 | # Python 2 only k = 9223372036854775808L # Python 2 and 3: k = 9223372036854775808 |
1 2 3 4 5 | # Python 2 only bigint = 1L # Python 2 and 3 from future.builtins import int bigint = int ( 1 ) |
统一整数除法
P2 的除法 / 符号实际上具有两个功能:
当两个操作数均为整型对象时,进行的是地板除(截除小数部分),返回整型对象;
当两个操作数存在至少一个浮点型对象时,进行的是真除(保留小数部分),返回浮点型对象。
P3 的除法 / 符号仅仅具有真除的功能,而地板除的功能则交由 // 来完成。
兼容技巧:
1 2 3 4 5 | # Python 2 only: assert 2 / 3 = = 0 # Python 2 and 3: assert 2 / / 3 = = 0 “ True division” ( float division): |
1 2 3 4 | # Python 3 only: assert 3 / 2 = = 1.5 # Python 2 and 3: from __future__ import division # (at top of module) |
统一缩进语法
P2 可以混合使用 tab 和 space 两种方式来进行缩进(1 个 tab == 8 个 space),但实际上这一特性并非所有 IDE 都能够支持,会因此出现同样的代码无法跨 IDE 运行的情况。
P3 统一使用 tab 作为缩进,如果 tab 和 space 同时存在,就会触发异常:
1 | TabError: inconsistent use of tabs and spaces in indentation. |
兼容技巧:
统一使用 tab 作为缩进。
统一类定义
P2 同时支持新式类(object)和老式类。
P3 则统一使用新式类,并且只有使用新式类才能应用多重继承。
兼容技巧:
统一使用新式类。
统一字符编码类型
P2 默认使用 ASCII 字符编码,但因为 ASCII 只支持数百个字符,并不能灵活的满足非英文字符,所以 P2 同时也支持 Unicode 这种更强大的字符编码。不过,由于 P2 同时支持两套字符编码,就难免多出了一些标识和转换的麻烦。
而 P3 统一使用 Unicode 字符编码,这节省了开发者的时间,同时也可以轻松地在程序中输入和显示更多种类的字符。
兼容技巧:
在所有的字符串赋值中均使用前缀 u,或引入 unicode_literals 字符模块。
1 2 3 4 5 6 7 8 9 10 | # Python 2 only s1 = 'PythonTab' s2 = u 'PythonTab中文网' # Python 2 and 3 s1 = u 'PythonTab' s2 = u 'PythonTab中文网' # Python 2 and 3 from __future__ import unicode_literals # at top of module s1 = 'PythonTab' s2 = 'PythonTab中文网' |
统一导入模块的路径搜索方式
P2 导入一个模块时首先会搜索当前目录(cwd),若非,则搜索环境变量路径(sys.path)。这一特性时常给开发者带来困扰,相信大家都曾经碰到过,尤其当自定义模块与系统模块重名的时候;
为了解决这个问题,默认的 P3 仅会搜索环境变量路径,当你需要搜索自定义模块时,你可以在包管理模式下将项目路径加入到环境变量中,然后再使用绝对路径和相对路径(以 . 开头)的方式来导入。
兼容技巧:
统一使用绝对路径进行自定义模块导入。
修正列表推导式的变量作用域泄露
P2 的列表推倒式中的变量会泄露到全局作用域,例如:
1 2 3 4 5 6 7 8 9 10 11 | import platform print ( 'Python' , platform.python_version()) i = 1 print ( 'before: I = %s' % i) print ( 'comprehension: %s' % [i for i in range ( 5 )]) print ( 'after: I = %s' % i) # OUT Python 2.7 . 6 before: i = 1 comprehension: [ 0 , 1 , 2 , 3 , 4 ] after: i = 4 |
P3 则解决了这个问题,列表推倒式中的变量不再泄露到全局作用域。
1 2 3 4 5 6 7 8 9 10 11 | import platform print ( 'Python' , platform.python_version()) i = 1 print ( 'before: i =' , i) print ( 'comprehension:' , [i for i in range ( 5 )]) print ( 'after: i =' , i) # OUT Python 3.4 . 1 before: i = 1 comprehension: [ 0 , 1 , 2 , 3 , 4 ] after: i = 1 |
修正非法比较操作异常
P2 能够对两个数据类型并不相同的对象进行比较。
1 2 3 4 5 | import platform print ( 'Python' , platform.python_version()) print ( "[1, 2] > 'foo' = " , [ 1 , 2 ] > 'foo' ) print ( "(1, 2) > 'foo' = " , ( 1 , 2 ) > 'foo' ) print ( "[1, 2] > (1, 2) = " , [ 1 , 2 ] > ( 1 , 2 )) |
# OUT
1 2 3 4 | Python 2.7.6 [1, 2] > 'foo' = False (1, 2) > 'foo' = True [1, 2] > (1, 2) = False |
不过,这种看似方便的特性,实际上却是一个定时炸弹,因为你无法唯一的确定到底是什么原因导致的返回值为 False(可能是数据比较、也可能是数据类型不一致)。
P3 则对其进行了修正,如果比较操作数类型不一致时,会触发 TypeError 异常。
兼容技巧:
永远不要比较数据类型不一致的对象。
统一抛出异常语法
P2 同时支持新旧两种异常触发语法:
1 2 | raise IOError, "file error" # Old raise IOError( "file error" ) # New |
P3 则统一使用新异常触发语法,否则会触发 SyntaxError 异常:
1 | raise IOError( "file error" ) |
兼容技巧:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | ### 抛出异常 # Python 2 only: raise ValueError, "dodgy value" # Python 2 and 3: raise ValueError( "dodgy value" ) ### 使用 traceback 抛出异常 # Python 2 only: traceback = sys.exc_info()[ 2 ] raise ValueError, "dodgy value" , traceback # Python 3 only: raise ValueError( "dodgy value" ).with_traceback() # Python 2 and 3: option 1 from six import reraise as raise_ # or # from future.utils import raise_ traceback = sys.exc_info()[ 2 ] raise_(ValueError, "dodgy value" , traceback) # Python 2 and 3: option 2 from future.utils import raise_with_traceback raise_with_traceback(ValueError( "dodgy value" )) ### 异常链处理 # Setup: class DatabaseError(Exception): pass # Python 3 only class FileDatabase: def __init__( self , filename): try : self . file = open (filename) except IOError as exc: raise DatabaseError( 'failed to open' ) from exc # Python 2 and 3: from future.utils import raise_from class FileDatabase: def __init__( self , filename): try : self . file = open (filename) except IOError as exc: raise_from(DatabaseError( 'failed to open' ), exc) |
统一异常处理语法
P2 实现异常处理也能够支持两种语法。
1 2 3 4 5 | try : let_us_cause_a_NameError except NameError, err: # except NameError as err: print err, '--> our error message' |
P3 的异常处理则强制要求使用 as 关键字的方式。
1 2 3 4 | try : let_us_cause_a_NameError except NameError as err: print (err, '--> our error message' ) |
兼容技巧:
统一使用 as 关键字的异常处理方式。
统一输入函数
P2 支持 raw_input 和 input 两个输入函数,区别在于前者仅能返回 String 类型对象,后者则支持返回数字和字符串两种数据类型对象,并且当输入为表达式时,会隐式调用 eval 函数返回其执行结果。显然的,使用 input 是更加灵活的写法。
所以 P3 统一的使用了 input 函数进行输入处理。
兼容技巧:
统一使用 input 内置函数。
1 2 3 4 5 | # Python 2 only: input ( "Type something safe please: " ) # Python 2 and 3 from future.builtins import input eval ( input ( "Type something safe please: " )) |
统一输出函数
P2 中的 print 即是关键字又是内置函数。print 'Hello world!' 为一条语句,print('Hello world!') 则为一次函数调用。
P3 统一使用 print 函数进行输出操作,其原型如下,这一改变让 P3 的输出处理变得更加简洁、强大而优雅,通过实参的传递就能替代 P2 中繁复的代码实现。
1 | print ( * objects, sep = ' ' , end = '\n' , file = sys.stdout, flush = False ) |
兼容技巧:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ### 单行打印单个 String # Python 2 only: print 'Hello' # Python 2 only: print 'Hello' ### 单行打印多个 String # Python 2 only: print 'Hello' , 'Guido' # Python 2 and 3: from __future__ import print_function # (at top of module) print ( 'Hello' , 'Guido' ) ### 输出重定向 # Python 2 only: print >> sys.stderr, 'Hello' # Python 2 and 3: from __future__ import print_function print ( 'Hello' , file = sys.stderr) ### 换行打印 # Python 2 only: print 'Hello' , # Python 2 and 3: from __future__ import print_function print ( 'Hello' , end = '') |
统一文件操作函数
P2 支持使用 file 和 open 两个函数来进行文件操作。
P3 则统一使用 open 来进行文件操作。
兼容技巧:
统一使用 open 函数。
1 2 3 4 | # Python 2 only: f = file (pathname) # Python 2 and 3: f = open (pathname) |
统一列表迭代器生成函数
P2 支持使用 range 和 xrange 两个函数来生成可迭代对象,区别在于前者返回的是一个列表类型对象,后者返回的是一个类似生成器(惰性求值)的迭代对象,支持无限迭代。所以当你需要生成一个很大的序列时,推荐使用 xrange,因为它不会一上来就索取序列所需的所有内存空间。如果只对序列进行读操作的话,xrange 方法效率显然会更高,但是如果要修改序列的元素,或者往序列增删元素的话,那只能通过 range 方法生成一个 list 对象了。
P3 则统一使用 range 函数来生成可迭代对象,但其实 P3 的 range 更像是 P2 的 xrange。所以在 P3 中如果你想得到一个可以被修改的列表对象,你需要这么做:
1 2 | list ( range ( 1 , 10 )) [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ] |
兼容技巧:
统一使用 range 函数
1 2 3 4 5 6 7 8 9 10 11 | # Python 2 only: for i in xrange ( 10 * * 8 ): ... # Python 2 and 3: forward-compatible from future.builtins import range for i in range ( 10 * * 8 ): ... # Python 2 and 3: backward-compatible from past.builtins import xrange for i in xrange ( 10 * * 8 ): ... |
统一迭代器迭代函数
P2 中支持使用内置函数 next 和迭代器对象的 .next() 实例方法这两种方式来获取迭代器对象的下一个元素。所以,在实现自定义迭代器对象类时,必须实现 .next() 实例方法:
1 2 3 4 5 6 7 8 9 10 11 | # Python 2 only class Upper( object ): def __init__( self , iterable): self ._iter = iter (iterable) def next ( self ): # Py2-styface iterator interface return self ._iter. next ().upper() def __iter__( self ): return self itr = Upper( 'hello' ) assert itr. next () = = 'H' # Py2-style assert list (itr) = = list ( 'ELLO' ) |
但在 P3 中统一了使用 next 内置函数来获取下一个元素,如果试图调用 .next() 方法则会触发 AttributeError 异常。所以,在 P3 中实现自定义迭代器所要实现的是 __next__ 特殊方法。
兼容技巧:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | # Python 2 and 3: option 1 from future.builtins import object class Upper( object ): def __init__( self , iterable): self ._iter = iter (iterable) def __next__( self ): # Py3-style iterator interface return next ( self ._iter).upper() # builtin next() function calls def __iter__( self ): return self itr = Upper( 'hello' ) assert next (itr) = = 'H' # compatible style assert list (itr) = = list ( 'ELLO' ) # Python 2 and 3: option 2 from future.utils import implements_iterator @implements_iterator class Upper( object ): def __init__( self , iterable): self ._iter = iter (iterable) def __next__( self ): # Py3-style iterator interface return next ( self ._iter).upper() # builtin next() function calls def __iter__( self ): return self itr = Upper( 'hello' ) assert next (itr) = = 'H' assert list (itr) = = list ( 'ELLO' ) |