802. Find Eventual Safe States [Medium]

这篇博客探讨了在解决有向图中寻找安全节点的问题时,深度优先搜索(DFS)和广度优先搜索(BFS)的策略。作者首先分享了一段使用DFS实现的代码,该代码能在99.18%的情况下更快地运行,并且由于DFS的自然顺序,结果列表无需额外排序。接着,作者提到了一个BFS的解决方案,虽然它需要构建反向邻接表和出度数组,并在最后进行排序,导致其效率低于DFS。博客还分析了两种方法在不同场景下的优缺点,并提供了BFS的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/**
 * 自己的思路,DFS
 * 开始代码一直runtime error,看了discuss发现是因为helper里没有在进入递归前将dp[i]设为false
 * Runtime: 4 ms, faster than 99.18%
 * Memory Usage: 49 MB, less than 39.07%
 */
class Solution {
    public List<Integer> eventualSafeNodes(int[][] graph) {
        List<Integer> res = new ArrayList<>();
        Boolean[] visited = new Boolean[graph.length];
        for (int i = 0; i < graph.length; i++) {
            if (helper(visited, graph, i)) {
                res.add(i);
            }
        }
        return res;
    }
    
    private boolean helper(Boolean[] visited, int[][] graph, int i) {
        if (visited[i] != null)
            return visited[i];
        visited[i] = false; // 这里一定要先将visited设为false,因为在这条路的递归中可能会再回到当前节点,如果在进入递归前没给visited[i]一个值,会造成死循环,回到当前节点就说明是false了
        for (int next : graph[i]) {
            if (!helper(visited, graph, next)) {
                return false;
            }
        }
        visited[i] = true;
        return true;
    }
}

第一次复习

和上次代码一样,而且也没有想到BFS的办法

看discuss找到了一个,但是比较tricky,只当锻炼思维

思路和计划课表(🟠 leetcode207. Course Schedule)中的BFS差不多,那边是用某一方向的邻接表(因为是判断环,方向正反无所谓,全部边逆向也没关系)和indegree数组,这里是用反向的邻接表和outdegree数组。

对比:

207用BFS和用DFS差不多,因为indegree数组初始化搭着建立邻接表的循环一起完成,不会比建立不需要初始化的Boolean[]耽误多少时间。

但本题用BFS比用DFS慢很多,因为本题直接给出了邻接表,而我们要把它反向,浪费了时间空间。而且本题要求结果升序排列,用DFS得到的list直接是升序的,而BFS得到的list需要sort一次再返回。如果本题像207那样只给边让我们自己构建邻接表、不要求list有序,那这里的BFS就也会和DFS差不多了。

/**
 * 找有向图中出发无环的点集合
 * BFS,这题的BFS比较tricky,需要构建:
 * 一个出度数组,来找到每次到了terminal的点(出度为0)
 * 一张反向临接表,来找到各个出度被当前走到了terminal的点影响的点,将它们的出度➖1
 * what's more,最后还要排序得到的List,因为题目要求升序排列节点,而BFS中加入节点的顺序是先加计算完后出度为0的点,是无序的
 * (在DFS中因为我们判断节点没有无环的顺序是0~n-1,因此自然是从小到大添加的节点,就没有排序的问题)
 * Runtime: 24 ms, faster than 36.86%
 * Memory Usage: 49 MB, less than 56.92%
 */
class Solution {
    
    public List<Integer> eventualSafeNodes(int[][] graph) {
        List<Integer> res = new LinkedList();
        int n = graph.length;
        int[] outdegree = new int[n];
        List<Integer>[] reversedAdjacency = new List[n];
        LinkedList<Integer> queue = new LinkedList();
        
        // construct reversedAdjacency, outdegree array, and queue
        for (int i = 0; i < n; i++) {
            reversedAdjacency[i] = new LinkedList();
        }
        for (int i = 0; i < n; i++) {
            int[] nextNodes = graph[i];
            outdegree[i] = nextNodes.length;
            if (nextNodes.length == 0) {
                queue.add(i);
            }
            for (int node : nextNodes) {
                reversedAdjacency[node].add(i);
            }
        }
        
        // topological sort (BFS)
        while (!queue.isEmpty()) {
            int curr = queue.poll();
            res.add(curr);
            for (int pre : reversedAdjacency[curr]) {
                if (--outdegree[pre] == 0) {
                    queue.offer(pre);
                }
            }
        }
        
        Collections.sort(res);
        return res;
    }
    
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值