torch_scatter.scatter详解

本文深入探讨了torch_scatter.scatter_mean函数的使用,该函数通过src和index张量创建新的张量,按照index相同值对src元素进行维度上的平均计算。在给出的例子中,展示了一个二维张量在指定维度上如何利用scatter_mean进行均值运算,这对于处理分组数据或聚合计算非常有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

scatter方法通过src和index两个张量来获得一个新的张量。

torch_scatter.scatter(src: torch.Tensor, index: torch.Tensor, dim: int = - 1, out: Optional[torch.Tensor] = None, dim_size: Optional[int] = None, reduce: str = 'sum') → torch.Tensor

原理如图,根据index,将index相同值对应的src元素进行对应定义的计算,dim为在第几维进行相应的运算。e.g.scatter_sum即进行sum运算,scatter_mean即进行mean运算。
在这里插入图片描述
e.g.x=scatter_mean(data.x, data.batch, dim=0)
我们给定一个二维张量x[952,21]为src,一维张量batch[952]为index,scatter_mean则将batch相同元素对应的x元素在0维上进行mean计算。具体过程如下:
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值