GAT学习:PyG实现GAT(使用PyG封装好的GATConv函数)(三)

本文介绍了如何利用PyG库中的GATConv模块,以简化和提升图注意力网络(GAT)的实现效果。在Cora数据集上的实验表明,使用封装的GATConv能获得约65%的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前我的实现方式相对而言麻烦且准确率不够好,只能达到65%左右的准确率(Cora上),这里介绍直接用PyG封装好的GAT函数实现:

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.nn import GATConv

from torch_geometric.utils import add_self_loops,degree
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as F


class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.gat1=GATConv(dataset.num_node_features,
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值