bzoj1013: [JSOI2008]球形空间产生器sphere

本文介绍了解决bzoj1013题目——JSOI2008球形空间产生器的方法。通过将距离公式转换为n元一次方程组,并运用高斯消元法求解未知数,最终实现了球形空间中点坐标的精确计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bzoj1013: [JSOI2008]球形空间产生器sphere
想了想既然写了就发上来吧。


题解

展开距离公式变成n元一次方程组,直接高斯消元即可,保证有解。


奇怪的代码
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,t;
double e[12][12],ans[11];
void rev(double a[],double b[])
{for(int i=0;i<12;i++)swap(a[i],b[i]);}
void sub(double a[],double b[])
{for(int i=0;i<12;i++)a[i]-=b[i];}
void mul(double a[],double k)
{for(int i=0;i<12;i++)a[i]*=k;}
bool zer(double k)
{return (k+1e-8>0)&&(k-1e-8<0);}
int main()
{
    scanf("%d",&n);
    for(int j=0;j<n;j++)
    scanf("%lf",&e[0][j]),e[0][n]+=e[0][j]*e[0][j],e[0][j]*=2;
    for(int i=1;i<=n;i++)
    {
        for(int j=0;j<n;j++)
        scanf("%lf",&e[i][j]),e[i][n]+=e[i][j]*e[i][j],e[i][j]*=2;
        for(int j=0;j<=n;j++)
        e[i][j]-=e[0][j];
    }
    for(int i=0;i<n-1;i++)
    {
        t=i;
        while(zer(e[++t][i])&&t<=n);
        if(t>n)continue;
        rev(e[i+1],e[t]);
        for(int j=i+2;j<=n;j++)
        if(!zer(e[j][i]))
        mul(e[j],e[i+1][i]/e[j][i]),sub(e[j],e[i+1]);
    }
    ans[n-1]=e[n][n]/e[n][n-1];
    for(int i=n-1;i>0;i--)
    {
        for(int j=i;j<n;j++)
        e[i][n]-=ans[j]*e[i][j];
        ans[i-1]=e[i][n]/e[i][i-1];
    }
    printf("%.3lf",ans[0]);
    for(int i=1;i<n;i++)
    printf(" %.3lf",ans[i]);
    printf("\n");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值