自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(290)
  • 收藏
  • 关注

原创 RT-DETR更新汇总贴

RT-DETR使用教程:缝合教程: RT-DETR中的yaml文件详解:labelimg使用教程:

2024-11-11 21:40:38 1561 1

原创 YOLOv11及自研模型更新汇总

群文件2024/11/08日更新。,群文件2024/11/08日更新。

2024-11-08 19:39:26 4604

原创 YOLO融合LWGANet中的LWGA模块

遥感 (RS) 视觉任务具有重要的学术和实践意义。然而,他们遇到了许多阻碍有效特征提取的挑战,包括检测和识别单个图像中比例差异很大的多个物体。虽然以前的双分支或多分支架构策略在管理这些对象差异方面是有效的,但它们同时导致了计算需求和参数数量的显着增加。因此,这些架构在资源受限的设备上部署的可行性降低。主要为自然图像设计的现代轻量级骨干网络在从多尺度物体中有效提取特征时经常遇到困难,这损害了它们在 RS 视觉任务中的功效。

2025-07-20 08:15:00 525

原创 RTDETR融合DECS-Net中的FFM模块

论文速览:裂缝是结构严重损伤的早期标志,也是结构健康评价和监测过程中的重要指标。然而,复杂的背景干扰使得小裂纹的分割成为一项极具挑战性的任务。为此,构建了一种基于卷积神经网络(CNN)和变压器的双编码器裂纹分割网络(DECS-Net),实现了裂纹的自动检测。首先,提出了一种高低频注意(HLA)机制,利用Haar小波提取信号的近似分量和详细分量,并进一步处理得到信号的低频和高频特征;

2025-07-19 18:00:00 441

原创 YOLO融合DECS-Net中的FFM模块

论文速览:裂缝是结构严重损伤的早期标志,也是结构健康评价和监测过程中的重要指标。然而,复杂的背景干扰使得小裂纹的分割成为一项极具挑战性的任务。为此,构建了一种基于卷积神经网络(CNN)和变压器的双编码器裂纹分割网络(DECS-Net),实现了裂纹的自动检测。首先,提出了一种高低频注意(HLA)机制,利用Haar小波提取信号的近似分量和详细分量,并进一步处理得到信号的低频和高频特征;

2025-07-19 18:00:00 407

原创 RTDETR融合LWGANet中的LWGA模块

论文速览:遥感 (RS) 视觉任务具有重要的学术和实践意义。然而,他们遇到了许多阻碍有效特征提取的挑战,包括检测和识别单个图像中比例差异很大的多个物体。虽然以前的双分支或多分支架构策略在管理这些对象差异方面是有效的,但它们同时导致了计算需求和参数数量的显着增加。因此,这些架构在资源受限的设备上部署的可行性降低。主要为自然图像设计的现代轻量级骨干网络在从多尺度物体中有效提取特征时经常遇到困难,这损害了它们在 RS 视觉任务中的功效。

2025-07-19 17:24:48 620

原创 RTDETR融合CAF-YOLO中的ACFM模块

论文速览:物体检测在生物医学图像分析中至关重要,尤其是对于病变识别。虽然目前的方法能够熟练地识别和精确定位病变,但它们往往缺乏检测微小生物医学实体(例如,异常细胞、小于 3 毫米的肺结节)所需的精度,这些实体在血液和肺部病理学中至关重要。为了应对这一挑战,我们提出了基于 YOLOv8 架构的 CAF-YOLO,这是一种灵活而强大的医疗对象检测方法,它利用了卷积神经网络 (CNN) 和转换器的优势。为了克服卷积核与远程信息交互能力受限的限制,我们引入了注意力和卷积融合模块 (ACFM)。

2025-07-18 18:00:00 729

原创 YOLO融合CAF-YOLO中的ACFM模块

物体检测在生物医学图像分析中至关重要,尤其是对于病变识别。虽然目前的方法能够熟练地识别和精确定位病变,但它们往往缺乏检测微小生物医学实体(例如,异常细胞、小于 3 毫米的肺结节)所需的精度,这些实体在血液和肺部病理学中至关重要。为了应对这一挑战,我们提出了基于 YOLOv8 架构的 CAF-YOLO,这是一种灵活而强大的医疗对象检测方法,它利用了卷积神经网络 (CNN) 和转换器的优势。为了克服卷积核与远程信息交互能力受限的限制,我们引入了注意力和卷积融合模块 (ACFM)。

2025-07-18 18:00:00 773

原创 RTDETR融合[CVPR2025]EVSSM中的EDFFN模块

论文速览:卷积神经网络(CNNs)和视觉变换器(ViTs)在图像恢复方面表现出色。虽然ViTs通过有效捕捉长距离依赖关系和输入特定特征总体上优于CNNs,但它们在图像分辨率增加时计算复杂性呈平方增长。这一限制妨碍了它们在高分辨率图像恢复中的实际应用。在本文中,我们提出了一种简单而有效的视觉状态空间模型(EVSSM)用于图像去模糊,利用状态空间模型(SSMs)在视觉数据中的优势。

2025-07-17 18:00:00 788

原创 YOLO融合[CVPR2025]EVSSM中的EDFFN模块

论文速览:卷积神经网络(CNNs)和视觉变换器(ViTs)在图像恢复方面表现出色。虽然ViTs通过有效捕捉长距离依赖关系和输入特定特征总体上优于CNNs,但它们在图像分辨率增加时计算复杂性呈平方增长。这一限制妨碍了它们在高分辨率图像恢复中的实际应用。在本文中,我们提出了一种简单而有效的视觉状态空间模型(EVSSM)用于图像去模糊,利用状态空间模型(SSMs)在视觉数据中的优势。

2025-07-17 18:00:00 627

原创 RTDETR融合[CVPR2025]MaIR中的SSA模块

Mamba 的最新进展在图像恢复方面显示出有希望的结果。这些方法通常沿行和列将 2D 图像展平为多个不同的 1D 序列,使用选择性扫描作独立处理每个序列,然后将它们重新组合以形成输出。然而,这种范式忽视了两个重要方面:i) 自然图像中固有的局部关系和空间连续性,以及 ii) 序列之间的差异通过完全不同的方式展开。为了克服这些缺点,我们探讨了基于 Manba 的恢复方法中的两个问题:i) 如何设计一种扫描策略,在促进恢复的同时保持局部性和连续性,以及 ii) 如何聚合以完全不同的方式展开的不同序列。

2025-07-16 18:00:00 554

原创 YOLO融合[CVPR2025]MaIR中的SSA模块

Mamba 的最新进展在图像恢复方面显示出有希望的结果。这些方法通常沿行和列将 2D 图像展平为多个不同的 1D 序列,使用选择性扫描作独立处理每个序列,然后将它们重新组合以形成输出。然而,这种范式忽视了两个重要方面:i) 自然图像中固有的局部关系和空间连续性,以及 ii) 序列之间的差异通过完全不同的方式展开。为了克服这些缺点,我们探讨了基于 Manba 的恢复方法中的两个问题:i) 如何设计一种扫描策略,在促进恢复的同时保持局部性和连续性,以及 ii) 如何聚合以完全不同的方式展开的不同序列。

2025-07-16 18:00:00 1100

原创 RTDETR融合CFFormer中的FeatureCorrection_s2c模块

论文速览:多源遥感图像(RSIs)能够捕捉地面物体的互补信息,用于语义分割。然而,来自不同传感器的多模态数据之间可能存在不一致性和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用其互补特征,是一个挑战。在本文中,我们提出了一种用于多源遥感图像语义分割的通用跨融合变压器框架(CFFormer),采用并行双流结构分别从不同模态中提取特征。我们引入了一个特征校正模块(FCM),通过结合其他模态的特征,在空间和通道维度上校正当前模态的特征。

2025-07-15 18:00:00 1032

原创 YOLO融合CFFormer中的FeatureCorrection_s2c模块

论文速览:多源遥感图像(RSIs)能够捕捉地面物体的互补信息,用于语义分割。然而,来自不同传感器的多模态数据之间可能存在不一致性和干扰噪声。因此,如何有效减少不同模态之间的差异和噪声,并充分利用其互补特征,是一个挑战。在本文中,我们提出了一种用于多源遥感图像语义分割的通用跨融合变压器框架(CFFormer),采用并行双流结构分别从不同模态中提取特征。我们引入了一个特征校正模块(FCM),通过结合其他模态的特征,在空间和通道维度上校正当前模态的特征。

2025-07-15 18:00:00 820

原创 RTDETR融合[WACV 2025]SEM-Net中的模块

论文速览:图像修复旨在根据图像中已知区域的信息修复部分受损的图像。实现语义上合理的修复结果尤其具有挑战性,因为这要求修复区域展现出与语义一致区域相似的模式。这需要一个具有强大能力来捕捉长程依赖关系的模型。现有的模型在这方面存在困难,因为基于卷积神经网络(CNN)的方法感受野增长缓慢,而基于Transformer的方法仅在补丁级别进行交互,这些都不利于捕捉长程依赖关系。

2025-07-14 18:00:00 1312

原创 YOLO融合[WACV 2025]SEM-Net中的模块

图像修复旨在根据图像中已知区域的信息修复部分受损的图像。实现语义上合理的修复结果尤其具有挑战性,因为这要求修复区域展现出与语义一致区域相似的模式。这需要一个具有强大能力来捕捉长程依赖关系的模型。现有的模型在这方面存在困难,因为基于卷积神经网络(CNN)的方法感受野增长缓慢,而基于Transformer的方法仅在补丁级别进行交互,这些都不利于捕捉长程依赖关系。

2025-07-14 18:00:00 593

原创 RTDETR融合[CVPR2025]Mona模块

论文速览:在视觉任务中的效率和性能。近期的增量调优方法为视觉分类任务提供了更多选择。尽管取得了成功,但现有的视觉增量调优技术在诸如目标检测和分割等具有挑战性的任务中仍未能超越全量微调的上限。为了找到全量微调的有竞争力的替代方案,我们提出了多认知视觉适配器(Mona)调优,这是一种基于适配器的调优新方法。首先,我们在适配器中引入了多个对视觉友好的滤波器,以增强其处理视觉信号的能力,而此前的方法主要依赖于对语言友好的线性滤波器。

2025-07-13 18:03:47 701

原创 YOLO融合[CVPR2025]Mona模块

论文速览:在视觉任务中的效率和性能。近期的增量调优方法为视觉分类任务提供了更多选择。尽管取得了成功,但现有的视觉增量调优技术在诸如目标检测和分割等具有挑战性的任务中仍未能超越全量微调的上限。为了找到全量微调的有竞争力的替代方案,我们提出了多认知视觉适配器(Mona)调优,这是一种基于适配器的调优新方法。首先,我们在适配器中引入了多个对视觉友好的滤波器,以增强其处理视觉信号的能力,而此前的方法主要依赖于对语言友好的线性滤波器。

2025-07-13 18:02:56 707

原创 YOLO融合[CVPR2024]SHViT中的SHSA模块

高效的 Vision Transformer 在资源受限的设备上表现出出色的性能和低延迟。传统上,它们在宏观层面使用 4x4 块状掩码和 4 级结构,在微观层面利用复杂的注意力和多头配置。本文旨在以内存高效的方式解决所有设计级别的计算冗余。我们发现,使用更大步长的块状掩码,不仅降低了内存访问成本,而且通过利用标记表示从早期阶段就减少了空间冗余,实现了具有竞争力的性能。此外,我们的初步分析表明,早期阶段的注意层可以用卷积代替,而后期阶段的几个注意头在计算上是冗余的。

2025-07-13 16:52:02 671

原创 RTDETR融合[CVPR2024]SHViT中的SHSA模块

论文速览:高效的 Vision Transformer 在资源受限的设备上表现出出色的性能和低延迟。传统上,它们在宏观层面使用 4x4 块状掩码和 4 级结构,在微观层面利用复杂的注意力和多头配置。本文旨在以内存高效的方式解决所有设计级别的计算冗余。我们发现,使用更大步长的块状掩码,不仅降低了内存访问成本,而且通过利用标记表示从早期阶段就减少了空间冗余,实现了具有竞争力的性能。此外,我们的初步分析表明,早期阶段的注意层可以用卷积代替,而后期阶段的几个注意头在计算上是冗余的。

2025-07-13 16:51:53 637

原创 RTDETR融合[CVPR2024]RAMiT中的下采样模块Downsizing

论文速览:尽管近期许多研究在图像修复(IR)领域取得了进展,但它们往往存在参数过多的问题。另一个问题是,大多数基于 Transformer 的图像修复方法仅关注局部或全局特征,导致感受野受限或参数不足。为了解决这些问题,我们提出了一种轻量级网络——互反注意力混合 Transformer(RAMiT)。它采用了我们提出的维度互反注意力混合 Transformer(D-RAMiT)块,该块并行计算不同多头数量的二维自注意力。二维注意力相互补充对方的不足之处,然后进行混合。

2025-07-10 18:00:00 954

原创 YOLO融合[CVPR2024]RAMiT中的下采样模块Downsizing

论文速览:尽管近期许多研究在图像修复(IR)领域取得了进展,但它们往往存在参数过多的问题。另一个问题是,大多数基于 Transformer 的图像修复方法仅关注局部或全局特征,导致感受野受限或参数不足。为了解决这些问题,我们提出了一种轻量级网络——互反注意力混合 Transformer(RAMiT)。它采用了我们提出的维度互反注意力混合 Transformer(D-RAMiT)块,该块并行计算不同多头数量的二维自注意力。二维注意力相互补充对方的不足之处,然后进行混合。

2025-07-10 18:00:00 1049

原创 RTDETR融合[CVPR2024]RAMiT中的特征融合模块HRAMi

论文速览:尽管近期许多研究在图像修复(IR)领域取得了进展,但它们往往存在参数过多的问题。另一个问题是,大多数基于 Transformer 的图像修复方法仅关注局部或全局特征,导致感受野受限或参数不足。为了解决这些问题,我们提出了一种轻量级网络——互反注意力混合 Transformer(RAMiT)。它采用了我们提出的维度互反注意力混合 Transformer(D-RAMiT)块,该块并行计算不同多头数量的二维自注意力。二维注意力相互补充对方的不足之处,然后进行混合。

2025-07-09 18:00:00 869

原创 YOLO融合[CVPR2024]RAMiT中的特征融合模块HRAMi

尽管近期许多研究在图像修复(IR)领域取得了进展,但它们往往存在参数过多的问题。另一个问题是,大多数基于 Transformer 的图像修复方法仅关注局部或全局特征,导致感受野受限或参数不足。为了解决这些问题,我们提出了一种轻量级网络——互反注意力混合 Transformer(RAMiT)。它采用了我们提出的维度互反注意力混合 Transformer(D-RAMiT)块,该块并行计算不同多头数量的二维自注意力。二维注意力相互补充对方的不足之处,然后进行混合。

2025-07-09 18:00:00 1152

原创 RTDETR融合[ICLR2025]PolaFormer中的极性感知线性注意力

论文速览:线性注意力机制已作为基于 softmax 的注意力机制的一种有前景的替代方案出现,它利用核化特征图将复杂度从序列长度的二次降低到线性。然而,特征图的非负约束以及近似中使用的松弛指数函数导致与原始查询-键点积相比存在显著的信息损失,从而产生具有更高熵的判别能力较弱的注意力图。为了解决查询-键对中负值驱动的缺失交互,我们提出了一种极性感知的线性注意力机制,该机制明确地对同符号和异符号的查询-键交互进行建模,确保关系信息的全面覆盖。

2025-07-08 18:00:00 684

原创 YOLO融合[ICLR2025]PolaFormer中的极性感知线性注意力

论文速览:线性注意力机制已作为基于 softmax 的注意力机制的一种有前景的替代方案出现,它利用核化特征图将复杂度从序列长度的二次降低到线性。然而,特征图的非负约束以及近似中使用的松弛指数函数导致与原始查询-键点积相比存在显著的信息损失,从而产生具有更高熵的判别能力较弱的注意力图。为了解决查询-键对中负值驱动的缺失交互,我们提出了一种极性感知的线性注意力机制,该机制明确地对同符号和异符号的查询-键交互进行建模,确保关系信息的全面覆盖。

2025-07-08 18:00:00 944

原创 RTDETR融合[CVPR2025]EfficientViM中的模块

论文速览:在资源受限的环境中部署神经网络方面,先前的研究构建了基于卷积和注意力机制的轻量级架构,分别用于捕获局部和全局依赖关系。最近,状态空间模型(SSM)作为一种有效的全局交互操作崭露头角,其在标记数量上的计算成本呈线性增长。为了充分利用 SSM 的优势,我们引入了基于隐藏状态混合器的状态空间对偶性(HSM-SSD)构建的新型架构——高效视觉mamba(EfficientViM),它能以更低的计算成本高效地捕获全局依赖关系。

2025-07-07 18:00:00 813

原创 YOLO融合[CVPR2025]EfficientViM中的模块

在资源受限的环境中部署神经网络方面,先前的研究构建了基于卷积和注意力机制的轻量级架构,分别用于捕获局部和全局依赖关系。最近,状态空间模型(SSM)作为一种有效的全局交互操作崭露头角,其在标记数量上的计算成本呈线性增长。为了充分利用 SSM 的优势,我们引入了基于隐藏状态混合器的状态空间对偶性(HSM-SSD)构建的新型架构——高效视觉mamba(EfficientViM),它能以更低的计算成本高效地捕获全局依赖关系。

2025-07-07 18:00:00 743

原创 RTDETR融合synergisticNet中的模块

论文速览:在高光谱影像 (HSI) 中,局部和非局部特征在分类任务中起着至关重要的作用。视觉转换器 (VIT) 可以通过注意力机制提取非局部特征,而卷积神经网络 (CNN) 擅长处理局部组件。然而,在基于 VIT 和 CNN 的传统双分支模型中,特征处理过程中缺乏交互,导致两类特征合并时可能存在兼容性问题。在本文中,我们提出了 HyperSINet,这是一种结合 VIT 和 CNN 的协同交互网络,用于建立两个分支之间的交互,在训练过程中实现局部和非局部特征之间的相互补偿,并最终增强分类任务的性能。

2025-07-06 12:00:00 659

原创 YOLO融合synergisticNet中的模块

论文速览:在高光谱影像 (HSI) 中,局部和非局部特征在分类任务中起着至关重要的作用。视觉转换器 (VIT) 可以通过注意力机制提取非局部特征,而卷积神经网络 (CNN) 擅长处理局部组件。然而,在基于 VIT 和 CNN 的传统双分支模型中,特征处理过程中缺乏交互,导致两类特征合并时可能存在兼容性问题。在本文中,我们提出了 HyperSINet,这是一种结合 VIT 和 CNN 的协同交互网络,用于建立两个分支之间的交互,在训练过程中实现局部和非局部特征之间的相互补偿,并最终增强分类任务的性能。

2025-07-06 12:00:00 689

原创 RTDETR融合synergisticNet中的模块

论文速览:在高光谱影像 (HSI) 分类任务中,每个像素都被分类为特定的土地覆被类别或材料。卷积神经网络 (CNN) 和转换器已广泛用于提取 HSI 分类中的局部和非局部特征。最近的工作利用多尺度视觉变压器 (ViT) 来增强光谱特征捕获并产生有希望的结果。然而,大多数现有方法在有效联合使用空间光谱信息和在传播过程中跨层保留信息方面仍面临挑战。

2025-07-05 20:00:40 781

原创 YOLO融合synergisticNet中的模块

论文速览:在高光谱影像 (HSI) 分类任务中,每个像素都被分类为特定的土地覆被类别或材料。卷积神经网络 (CNN) 和转换器已广泛用于提取 HSI 分类中的局部和非局部特征。最近的工作利用多尺度视觉变压器 (ViT) 来增强光谱特征捕获并产生有希望的结果。然而,大多数现有方法在有效联合使用空间光谱信息和在传播过程中跨层保留信息方面仍面临挑战。

2025-07-05 19:56:19 929

原创 RTDETR融合[CVPR2025]OverLock中的模块

论文速览:自上而下的注意力在人类视觉系统中起着至关重要的作用,其中大脑最初会获得场景的粗略概览以发现突出的线索(即首先概览),然后进行更仔细、更细粒度的检查(即,接下来仔细观察)。然而,现代卷积网络仍然局限于金字塔结构,该结构连续对特征图进行采样以进行感受野扩展,而忽略了这一关键的仿生原理。我们提出了 OverLoCK,这是第一个显式包含自上而下的注意力机制的纯 ConvNet 主干架构。与金字塔式骨干网络不同,我们的设计采用分支架构,具有三个协同子网络:1) 编码低/中级特征的 Base-Net;

2025-05-14 19:37:41 1035

原创 YOLOv11融合[CVPR2025]OverLock中的模块

自上而下的注意力在人类视觉系统中起着至关重要的作用,其中大脑最初会获得场景的粗略概览以发现突出的线索(即首先概览),然后进行更仔细、更细粒度的检查(即,接下来仔细观察)。然而,现代卷积网络仍然局限于金字塔结构,该结构连续对特征图进行采样以进行感受野扩展,而忽略了这一关键的仿生原理。我们提出了 OverLoCK,这是第一个显式包含自上而下的注意力机制的纯 ConvNet 主干架构。与金字塔式骨干网络不同,我们的设计采用分支架构,具有三个协同子网络:1) 编码低/中级特征的 Base-Net;

2025-05-14 19:21:09 859

原创 RTDETR融合[AAAI2025]的PConv模块

论文速览:近年来,基于卷积神经网络 (CNN) 的红外小目标检测方法取得了出色的性能。然而,这些方法通常采用标准卷积,而忽略了考虑红外小目标像素分布的空间特性。因此,我们提出了一种新的风车形卷积 (PConv) 来替代骨干网络下层的标准卷积。PConv 更好地与暗淡小目标的像素高斯空间分布对齐,增强了特征提取,显著增加了感受野,并且仅引入了最小的参数增加。此外,虽然最近的损失函数结合了尺度和位置损失,但它们没有充分考虑这些损失在不同目标尺度上的不同灵敏度,从而限制了对微小目标的检测性能。

2025-05-13 19:37:26 1087

原创 YOLOv11融合[AAAI2025]的PConv模块

近年来,基于卷积神经网络 (CNN) 的红外小目标检测方法取得了出色的性能。然而,这些方法通常采用标准卷积,而忽略了考虑红外小目标像素分布的空间特性。因此,我们提出了一种新的风车形卷积 (PConv) 来替代骨干网络下层的标准卷积。PConv 更好地与暗淡小目标的像素高斯空间分布对齐,增强了特征提取,显著增加了感受野,并且仅引入了最小的参数增加。此外,虽然最近的损失函数结合了尺度和位置损失,但它们没有充分考虑这些损失在不同目标尺度上的不同灵敏度,从而限制了对微小目标的检测性能。

2025-05-13 19:31:29 732

原创 YOLOv11融合[CVPR2025]BHViT中的token_mixer模块

模型二值化在实现卷积神经网络 (CNN) 的实时和节能计算方面取得了重大进展,为视觉转换器 (ViTs) 在边缘设备上面临的部署挑战提供了潜在的解决方案。然而,由于 CNN 和 Transformer 架构之间的结构差异,简单地将二进制 CNN 策略应用于 ViT 模型将导致性能显着下降。为了应对这一挑战,我们提出了 BHViT,这是一种二值化友好的混合 ViT 架构及其完整的二值化模型,并以三个重要观察结果为指导。

2025-04-16 09:04:50 917

原创 RTDETR融合[CVPR2025]BHViT中的token_mixer模块

论文速览:模型二值化在实现卷积神经网络 (CNN) 的实时和节能计算方面取得了重大进展,为视觉转换器 (ViTs) 在边缘设备上面临的部署挑战提供了潜在的解决方案。然而,由于 CNN 和 Transformer 架构之间的结构差异,简单地将二进制 CNN 策略应用于 ViT 模型将导致性能显着下降。为了应对这一挑战,我们提出了 BHViT,这是一种二值化友好的混合 ViT 架构及其完整的二值化模型,并以三个重要观察结果为指导。

2025-04-16 09:02:10 825

原创 YOLOv11融合[CVPR2025]DarkIR中的DBlock模块

由于昏暗的环境和长时间曝光的常见使用,夜间或黑暗条件下的摄影通常会出现噪点、弱光和模糊问题。尽管在这些条件下去模糊和低光图像增强 (LLIE) 是相关的,但图像修复中的大多数方法都是单独解决这些任务的。在本文中,我们提出了一种用于多任务低光图像恢复的高效而强大的神经网络。我们没有遵循当前基于 Transformer 的模型的趋势,而是提出了新的注意力机制来增强高效 CNN 的感受野。与以前的方法相比,我们的方法降低了参数和计算成本。总结:本文更新其中的DBlock等模块。​⭐⭐。

2025-04-15 10:02:21 824

原创 RTDETR融合[CVPR2025]DarkIR中的DBlock模块

论文速览:由于昏暗的环境和长时间曝光的常见使用,夜间或黑暗条件下的摄影通常会出现噪点、弱光和模糊问题。尽管在这些条件下去模糊和低光图像增强 (LLIE) 是相关的,但图像修复中的大多数方法都是单独解决这些任务的。在本文中,我们提出了一种用于多任务低光图像恢复的高效而强大的神经网络。我们没有遵循当前基于 Transformer 的模型的趋势,而是提出了新的注意力机制来增强高效 CNN 的感受野。与以前的方法相比,我们的方法降低了参数和计算成本。总结:本文更新其中的DBlock等模块。​⭐⭐。

2025-04-15 10:01:52 1319

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除