来源:力扣(LeetCode)
描述:
n
个朋友在玩游戏。这些朋友坐成一个圈,按 顺时针方向 从 1
到 n
编号。从第 i
个朋友的位置开始顺时针移动 1
步会到达第 (i + 1
) 个朋友的位置(1 <= i < n
),而从第 n
个朋友的位置开始顺时针移动 1
步会回到第 1
个朋友的位置。
游戏规则如下:
第 1
个朋友接球。
- 接着,第
1
个朋友将球传给距离他顺时针方向k
步的朋友。 - 然后,接球的朋友应该把球传给距离他顺时针方向
2 * k
步的朋友。 - 接着,接球的朋友应该把球传给距离他顺时针方向
3 * k
步的朋友,以此类推。
换句话说,在第 i
轮中持有球的那位朋友需要将球传递给距离他顺时针方向 i * k
步的朋友。
当某个朋友第 2 次接到球时,游戏结束。
在整场游戏中没有接到过球的朋友是 输家 。
给你参与游戏的朋友数量 n
和一个整数 k
,请按升序排列返回包含所有输家编号的数组 answer
作为答案。
示例 1:
输入:n = 5, k = 2
输出:[4,5]
解释:以下为游戏进行情况:
1)第 1 个朋友接球,第 1 个朋友将球传给距离他顺时针方向 2 步的玩家 —— 第 3 个朋友。
2)第 3 个朋友将球传给距离他顺时针方向 4 步的玩家 —— 第 2 个朋友。
3)第 2 个朋友将球传给距离他顺时针方向 6 步的玩家 —— 第 3 个朋友。
4)第 3 个朋友接到两次球,游戏结束。
示例 2:
输入:n = 4, k = 4
输出:[2,3,4]
解释:以下为游戏进行情况:
1)第 1 个朋友接球,第 1 个朋友将球传给距离他顺时针方向 4 步的玩家 —— 第 1 个朋友。
2)第 1 个朋友接到两次球,游戏结束。
提示:
- 1 <= k <= n <= 50
方法:直接模拟
思路与算法
根据题意可以知道总共有 n 个位置,由于起始编号为 1,第 i 个朋友的位置顺时针移动 1 步会到达第 (i + 1) mod n + 1 个朋友的位置。
游戏规则如下: 从第 1 个位置开始传球。
- 接着,第 1 个朋友将球传给距离他顺时针方向 k 步的朋友。
- 然后,接球的朋友应该把球传给距离他顺时针方向 2k 步的朋友。
- 接着,接球的朋友应该把球传给距离他顺时针方向 3k 步的朋友,以此类推。
换句话说,在第 iii 轮中持有球的那位朋友将球传递给距离他顺时针方向 i × k 步的朋友,假设在第 i 轮中持有球的朋友位置为 x,则第 i + 1 轮持有球的朋友位置为 (x + i × k) mod n + 1。当某个位置第 2 次接到球时,游戏结束,在整场游戏中没有接到过球的朋友是输家。
我们根据题意直接模拟即可,为了方便计算,设第 1 个小朋友的起始位置为 0,则从 0 开始进行传递,同时用 visit 来标记每个位置是否被访问过,假设当前的位置为 j,则第 i 次传递后球的位置处于 (j + i × k) mod n ,此时将所有访问过的位置标记即可,直到当前位置 j 已经被遍历过则直接结束,然后依次遍历找到未被访问的位置返回即可。
代码:
class Solution {
public:
vector<int> circularGameLosers(int n, int k) {
vector<bool> visit(n, false);
for (int i = k, j = 0; !visit[j]; i += k) {
visit[j] = true;
j = (j + i) % n;
}
vector<int> ans;
for (int i = 0; i < n; i++) {
if (!visit[i]) {
ans.emplace_back(i + 1);
}
}
return ans;
}
};
时间 12ms 击败 37.81%使用 C++ 的用户
内存 8.07mb 击败 89.84%使用 C++ 的用户
复杂度分析
- 时间复杂度:O(n),其中 n 为给定的数字。一共有 n 个位置,由于每个位置最多只会被访问一次,因此时间复杂度为 O(n)。
- 空间复杂度:O(n),其中 n 为给定的数字。一共有 n 个位置,需要记录每个位置是否被访问过,因此空间复杂度为 O(n)。
author:力扣官方题解