Flink 窗口 Window 介绍

本文介绍了Apache Flink的窗口(Window)概念,包括Time Windows和Count Windows,用于处理流数据。Flink提供了灵活的窗口机制,支持自定义窗口逻辑,适用于各种流处理场景,如滚动窗口、滑动窗口和计数窗口。文章还探讨了Flink的时间概念、触发器和清除策略,以及窗口在数据流上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:Flink 系统性学习笔记


数据分析场景见证了批处理到流处理的演变过程。尽管批处理可以作为流处理的一种特殊情况来处理,但分析永无止境的流数据通常需要转变一种思维方式,并使用它自己的专门术语,例如,窗口、At-Least-Once 或者 Exactly-Once 处理语义。

对于刚刚接触流处理的人来说,这种思维方式的转变以及新的专业术语可能会让他们感到非常困惑。但是,Apache Flink 作为一个为生产环境而生的流处理器,具有易于使用并且表达能力很强的 API 来定义高级流分析程序。Flink 的 API 在数据流上有非常灵活的窗口定义,使其能在其他开源流处理器中脱颖而出。

在这篇文章中,我们主要讨论用于流处理的窗口的概念,介绍 Flink 的内置窗口,并说明其对自定义窗口语义的支持。

1. 什么是窗口?它们有什么用?

我们拿交通传感器的例子来说明,传感器每15秒统计通过某个位置的车辆数量。结果流看起来像如下所示:

在这里插入图片描述

如果现在我们想知道有多少辆车经过这个位置,我们只需简单的将每15秒统计的数量相加即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值