PyTorch入门实战教程笔记(四):基础张量操作1

PyTorch入门实战教程笔记(四):基础张量操作1

包括:数据类型 和 创建Tensor

数据类型:

Python 与PyTorch基本类型对比如下图,可以看到数据可以一一对应,不同的维度表示了不同的类型。不过应该注意的是,PyTorch中没有类键string支持的,不过可以采用编码的方式,例如One-hot来表示,如 [0,1,0,0…]. 除此之外,也可以用Embedding可以用来表示常用的语言,不多介绍。
在这里插入图片描述
  在PyTorch中,我们只需要记住常用的类型就行,如下图所标准的类型,torch.ByteTensor用来比较两个元素是否相等,并且应该注意torch的CPU和GPU的类型是不一样的 中间要加cuda。可以用data=data.cuda()进行CPU到GPU类型的转换
  在这里插入图片描述
  我们可以使用一下方法来检验tensor的类型:
  在这里插入图片描述
  Dim 0张量:(标量)建立一个dimension(维度)为零的tensor,这种类型在loss函数中常用。可以用下图的语句得到标量的shape。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值