PyTorch入门实战教程笔记(二十四):卷积神经网络实现 2

PyTorch入门实战教程笔记(二十四):卷积神经网络实现 2:ResNet实现CIFAR10

CIFAR10数据集介绍

关于CIFAR-10数据集,可以访问它的官网进行下载:
http://www.cs.toronto.edu/~kriz/cifar.html
CIFAR包含常见的10类物体的照片,照片的size 为32×32,每一类照片有6000张,所以一共6万张照片,我们把6万张照片随机选出5万张照片作为training,剩余的1万张作为test.
在这里插入图片描述

CIFAR10代码实战准备

  1. 数据集的加载与使用,加载数据要用到的函数类:DataLoader、datasets、transforms,从对应的包中导入。过iter方法把DataLoader迭代器先得到,使用迭代器.next()方法得到一个batch,来验证数据的shape和label的shape,得到最终结果:x: torch.Size([32, 3, 32, 32]) label: torch.Size([32])。详细代码:
import  torch
from    torch.utils.data import DataLoader
from    torchvision import datasets
from    torchvision import transforms

def main():
    batchsz = 32

    #当前目录下新建文件夹'cifar',train = True,transform对数据进行变换,download=True自动下载数据集
    cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    #DataLoader方便一次加载多个,第一个参数为数据集cifar_train,第二个参数batch_size为每次批处理数量,
    #根据显卡设置batch_size,不要太小。第三个参数shuffle为打乱,设置成True。
    cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)

    cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
        transforms.Resize((32, 32)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    ]), download=True)
    cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)

    #通过iter方法把DataLoader迭代器先得到,使用迭代器.next()方法得到一个batch。
    x, label = iter(cifar_train).next()
    print('x:', x.shape, 'label:', label.shape)

if __name__ == '__main__':
    main()
  1. 新建一个类resnet,所有的pytorch的神经结构类都要继承自nn.Module这个类,使用from torch import nn,将其导入。新建类的初始化方法,调用super(ResBlk, self).init(),调用类的初始化方法类初始化父类。我们前面已经说了,最关键是resnet的基本单元,接下来参考下图来写这个基本单元。
    在这里插入图片描述
    根据上图,我们应该这个单元块的输入,输出,所以定义函数传入参数:def init(self, ch_in, ch_out, stride=1),
    然后通过super(ResBlk, self).init()初始化,使用nn.Conv2d()建立self.conv1层,通过nn.BatchNorm2d实现一个BN层bn1,把数据分布缩放到一定的范围,有利于训练。接着同样构造conv2, bn2。同样道理,新建一个forward()函数,通过F.relu(self.bn1(self.conv1(x)))实现relu。接下来考虑shotcut,有一个问题,如果ch_in和ch_out一样的话,能够直接相加,如果不一样,就需要输入再加一个单元,将ch_in扩展成和ch_out一样。所以我们要有一个if的判断,判断如果不一样,通过self.extra = nn.Sequential()将其扩展为一样的。同时在forward中使用out = self.extra(x) + out。
    此外,随着网络深度的加深,如果stride一直为1,由于padding的存在,会使图片的大小一直不变,所以我们在初始化时,应该设置一下stride参数,并使ResBlk的conv1的stride可以调节,同样,也要调节输入的图片的stride,即nn.Sequential()里面的stride。基本单元模块实现代码如下:
import  torch
from    torch import  nn
from    torch.nn import functional as F

class ResBlk(nn.Module):
    """
    resnet block
    """
    def __init__(self, ch_in, ch_out, stride=1):
        """
        :param ch_in:
        :param ch_out:
        """
        super(ResBlk, self).__init__()
        # we add stride support for resbok, which is distinct from tutorials.
        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential(
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值