PyTorch入门实战教程笔记(二十四):卷积神经网络实现 2:ResNet实现CIFAR10
CIFAR10数据集介绍
关于CIFAR-10数据集,可以访问它的官网进行下载:
http://www.cs.toronto.edu/~kriz/cifar.html。
CIFAR包含常见的10类物体的照片,照片的size 为32×32,每一类照片有6000张,所以一共6万张照片,我们把6万张照片随机选出5万张照片作为training,剩余的1万张作为test.
CIFAR10代码实战准备
- 数据集的加载与使用,加载数据要用到的函数类:DataLoader、datasets、transforms,从对应的包中导入。过iter方法把DataLoader迭代器先得到,使用迭代器.next()方法得到一个batch,来验证数据的shape和label的shape,得到最终结果:x: torch.Size([32, 3, 32, 32]) label: torch.Size([32])。详细代码:
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
def main():
batchsz = 32
#当前目录下新建文件夹'cifar',train = True,transform对数据进行变换,download=True自动下载数据集
cifar_train = datasets.CIFAR10('cifar', True, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]), download=True)
#DataLoader方便一次加载多个,第一个参数为数据集cifar_train,第二个参数batch_size为每次批处理数量,
#根据显卡设置batch_size,不要太小。第三个参数shuffle为打乱,设置成True。
cifar_train = DataLoader(cifar_train, batch_size=batchsz, shuffle=True)
cifar_test = datasets.CIFAR10('cifar', False, transform=transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]), download=True)
cifar_test = DataLoader(cifar_test, batch_size=batchsz, shuffle=True)
#通过iter方法把DataLoader迭代器先得到,使用迭代器.next()方法得到一个batch。
x, label = iter(cifar_train).next()
print('x:', x.shape, 'label:', label.shape)
if __name__ == '__main__':
main()
- 新建一个类resnet,所有的pytorch的神经结构类都要继承自nn.Module这个类,使用from torch import nn,将其导入。新建类的初始化方法,调用super(ResBlk, self).init(),调用类的初始化方法类初始化父类。我们前面已经说了,最关键是resnet的基本单元,接下来参考下图来写这个基本单元。
根据上图,我们应该这个单元块的输入,输出,所以定义函数传入参数:def init(self, ch_in, ch_out, stride=1),
然后通过super(ResBlk, self).init()初始化,使用nn.Conv2d()建立self.conv1层,通过nn.BatchNorm2d实现一个BN层bn1,把数据分布缩放到一定的范围,有利于训练。接着同样构造conv2, bn2。同样道理,新建一个forward()函数,通过F.relu(self.bn1(self.conv1(x)))实现relu。接下来考虑shotcut,有一个问题,如果ch_in和ch_out一样的话,能够直接相加,如果不一样,就需要输入再加一个单元,将ch_in扩展成和ch_out一样。所以我们要有一个if的判断,判断如果不一样,通过self.extra = nn.Sequential()将其扩展为一样的。同时在forward中使用out = self.extra(x) + out。
此外,随着网络深度的加深,如果stride一直为1,由于padding的存在,会使图片的大小一直不变,所以我们在初始化时,应该设置一下stride参数,并使ResBlk的conv1的stride可以调节,同样,也要调节输入的图片的stride,即nn.Sequential()里面的stride。基本单元模块实现代码如下:
import torch
from torch import nn
from torch.nn import functional as F
class ResBlk(nn.Module):
"""
resnet block
"""
def __init__(self, ch_in, ch_out, stride=1):
"""
:param ch_in:
:param ch_out:
"""
super(ResBlk, self).__init__()
# we add stride support for resbok, which is distinct from tutorials.
self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=stride, padding=1)
self.bn1 = nn.BatchNorm2d(ch_out)
self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(ch_out)
self.extra = nn.Sequential(