863.二叉树中所有距离为 K 的结点

该算法通过构建哈希表存储节点与其父节点的关系,然后从目标节点开始,利用递归查找距离为K的节点,避免重复访问。时间复杂度为O(N),空间复杂度为O(N)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

863.二叉树中所有距离为 K 的结点

中等难度

给定一个二叉树(具有根结点 root), 一个目标结点 target ,和一个整数值 k

返回到目标结点 target 距离为 k 的所有结点的值的列表。 答案可以以 任何顺序 返回。

示例 1:

img

输入:root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, k = 2
输出:[7,4,1]
解释:所求结点为与目标结点(值为 5)距离为 2 的结点,值分别为 7,4,以及 1

示例 2:

输入: root = [1], target = 1, k = 3
输出: []

提示:

  • 节点数在 [1, 500] 范围内
  • 0 <= Node.val <= 500
  • Node.val 中所有值 不同
  • 目标结点 target 是树上的结点。
  • 0 <= k <= 1000

思路

1、建哈希表 key=Integer ,value=TreeNode,如果某个节点的左孩子不为空,则将左孩子的值和父节点映射,存进哈希表。若右孩子不为空,则将右孩子的值和父节点映射,存进哈希表。建此表的目的是为了可以搜集每个节点的父节点,由示例1所示,我们需要向上递归,当查到target,可以根据target的值,对哈希表查询,查到父节点,直接跳转,这样就实现了向上递归

2、为了防止走回头路,所以设计了一个from标志,在向上递归的过程中,在当前访问节点的基础上去追它的父节点,而父节点在下一次的递归过程中还是会两个子节点都去访问的,而其中一个上一次已经访问过了,所以from存的是上次访问的子节点,这次无需再访问了,再访问必然会重复计算的

3、时间复杂度O(N),空间复杂度O(N)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {

    Map<Integer,TreeNode> parent = new HashMap<Integer,TreeNode>();
    List<Integer> res = new ArrayList<>();

    public List<Integer> distanceK(TreeNode root, TreeNode target, int k) {
        
        findParent(root);

        findAns(target,null,0,k);

        return res;
    }

    private void findParent(TreeNode node){
        if(node.left != null){
            parent.put(node.left.val,node);
            findParent(node.left);
        }

        if(node.right != null){
            parent.put(node.right.val ,node);
            findParent(node.right);
        }
    }

    private void findAns(TreeNode node, TreeNode from, int depth, int k){
        if(node == null){
            return;
        }

        if(depth == k){
            res.add(node.val);
        }

        if(node.left != from){
            findAns(node.left, node, depth+1 , k);
        }

        if(node.right != from){
            findAns(node.right,node,depth+1 , k);
        }

        if(parent.get(node.val) != from){
            findAns(parent.get(node.val), node, depth+1, k);
        }
    }
}
在C++中,为了找到二叉树中与给定元素距离为K的节点,我们可以使用深度优先搜索(DFS)或层次遍历(BFS)。这里提供一种基于BFS的方法,因为它能保证找到最近的节点。 首先,你需要定义一个表示二叉树节点的数据结构,例如: ```cpp struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; ``` 然后,你可以编写一个函数来求解这个问题: ```cpp int distanceK(TreeNode* root, int target, int K) { if (!root || !root->val) return -1; // 搜索结束,返回空指针或0 std::queue<TreeNode*> q; // 用于存储待访问节点 q.push(root); int targetDistance = 0; // 目标值到根的距离 while (!q.empty()) { int size = q.size(); for (int i = 0; i < size; ++i) { TreeNode* node = q.front(); q.pop(); if (node->val == target) { // 找到了目标节点 if (targetDistance + 1 == K) { return node->val; // 返回距离K的节点值 } else { continue; } } // 如果当前节点不是目标,递归检查左右子树 if (node->left && node->left->val != target) { q.push(node->left); } if (node->right && node->right->val != target) { q.push(node->right); } targetDistance += 1; // 更新目标值到当前节点的距离 } } return -1; // 没有找到距离为K的节点 } ``` 在这个函数里,我们从根节点开始,如果遇到目标节点,会检查它到根的距离是否等于K减一;如果不是,我们会把它的子节点加入队列并继续搜索。如果没有找到符合条件的节点,最后返回-1。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖成范德彪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值