2021-7-24 42. 接雨水(动态规划,双指针)

注:

题目:
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

示例 1:
在这里插入图片描述

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9

提示:
n == height.length
0 <= n <= 3 * 104
0 <= height[i] <= 105

题解:
方法一:动态规划
对于下标 i,下雨后水能到达的最大高度等于下标 i 两边的最大高度的最小值,下标 i 处能接的雨水量等于下标 i 处的水能到达的最大高度减去height[i]。

朴素的做法是对于数组height 中的每个元素,分别向左和向右扫描并记录左边和右边的最大高度,然后计算每个下标位置能接的雨水量。假设数组height 的长度为 n,该做法需要对每个下标位置使用 O(n) 的时间向两边扫描并得到最大高度,因此总时间复杂度是 O(n2)。

上述做法的时间复杂度较高是因为需要对每个下标位置都向两边扫描。如果已经知道每个位置两边的最大高度,则可以在 O(n) 的时间内得到能接的雨水总量。使用动态规划的方法,可以在 O(n) 的时间内预处理得到每个位置两边的最大高度。

创建两个长度为 n 的数组leftMax 和 rightMax。对于0≤i<n,leftMax[i] 表示下标 i 及其左边的位置中,height 的最大高度,rightMax[i] 表示下标 i 及其右边的位置中,height 的最大高度。

显然,leftMax[0]=height[0],rightMax[n−1]=height[n−1]。两个数组的其余元素的计算如下:
当 1≤i≤n−1 时,leftMax[i]=max(leftMax[i−1],height[i]);
当 0≤i≤n−2 时,rightMax[i]=max(rightMax[i+1],height[i])。

因此可以正向遍历数组height 得到数组 leftMax 的每个元素值,反向遍历数组 height 得到数组 rightMax 的每个元素值。

在得到数组leftMax 和rightMax 的每个元素值之后,对于 0≤i<n,下标 i 处能接的雨水量等于min(leftMax[i],rightMax[i])−height[i]。遍历每个下标位置即可得到能接的雨水总量。

复杂度分析
时间复杂度:O(n),其中 n 是数组height 的长度。计算数组 leftMax 和 rightMax 的元素值各需要遍历数组 height 一次,计算能接的雨水总量还需要遍历一次。

空间复杂度:O(n),其中 n 是数组 height 的长度。需要创建两个长度为 n 的数组 leftMax 和 rightMax。

class Solution {
   
   
public:
    int trap(vector<int>& height) {
   
   
        int size=height.size();
        if(size==0){
   
   
            
### 关于雨水问题的 Java 实现 雨水问题是经典的算法题目之一,其核心在于通过某种方式计算柱子之间的凹槽部分能够存储的水量。以下是基于 **单调栈** 和 **双指针法** 的两种常见解决方案。 --- #### 方法一:单调栈实现 单调栈是一种有效的数据结构用于处理此类区间极值问题。具体逻辑如下: 1. 使用 `Stack<Integer>` 存储柱子索引。 2. 遍历数组中的每一个柱子高度,当遇到当前柱子高于栈顶柱子时,则说明形成了一个可以积水的区域。 3. 计算该区域内的积水量并累加到总结果中。 下面是完整的代码实现: ```java import java.util.Stack; class Solution { public int trap(int[] height) { Stack<Integer> stack = new Stack<>(); int res = 0; for (int i = 0; i < height.length; i++) { while (!stack.isEmpty() && height[i] > height[stack.peek()]) { int top = stack.pop(); // 当前要计算面积的位置 if (stack.isEmpty()) break; int distance = i - stack.peek() - 1; // 左右边界距离 int boundedHeight = Math.min(height[i], height[stack.peek()]) - height[top]; res += distance * boundedHeight; } stack.push(i); } return res; } } ``` 这种方法的时间复杂度为 O(n),空间复杂度也为 O(n)[^1]。 --- #### 方法二:双指针优化 双指针法利用两个变量分别记录左侧最大值和右侧最大值,在遍历时逐步更新这些值,并根据当前位置的高度差来决定是否增加水体积。 以下是具体的代码实现: ```java class Solution { public int trap(int[] height) { int left = 0, right = height.length - 1; int lMax = 0, rMax = 0; int water = 0; while (left < right) { if (height[left] < height[right]) { if (height[left] >= lMax) { lMax = height[left]; } else { water += lMax - height[left]; } left++; } else { if (height[right] >= rMax) { rMax = height[right]; } else { water += rMax - height[right]; } right--; } } return water; } } ``` 这种解法时间复杂度同样为 O(n),但仅需常量级额外空间 O(1)[^2]。 --- #### 提供的代码分析 对于您给出的代码片段[^3],存在一些潜在改进之处: - 函数 `maxRight` 被多次调用,每次都会重新扫描右边的最大值,增加了不必要的开销。 - 可以考虑采用上述提到的方法进一步提升效率。 --- ### 总结 无论是使用单调栈还是双指针方法都可以高效解决问题。前者更直观易懂;后者则更加节省内存资源。实际应用可根据需求选择合适的方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值