求后序排列

给定二叉树的先序和中序遍历序列,利用递归分析找到子树的起点和终点,从而确定后序遍历序列。递归边界是叶子节点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:
给定一棵二叉树的先序遍历结点序列和中序遍历结点序列,求其后序遍历结点序列。

分析: 
由于遍历都是递归定义的,所以不难得到以下结论:树的任意子树的遍历结点序列一定是该树的遍历结点序列的一个连续子序列。有了这个结论后,我们的任务就是确定子树遍历结点序列的起点和终点,而这个可以根据preorder和inorder得到。例如,preorder的第一个结点是根,设为root,root这个结点会把inorder分为2部分(可能某部分为空),左边的就是左子树的中序遍历结点序列,右边的就是右子树的中序遍历结点序列,这样也就确定了左子树和右子树的结点数目,根据左右子树结点数目,就可得到左右子树的先序遍历结点序列,从而问题就递归了:已知左右子树的先序遍历结点序列和中序遍历结点序列,求后序遍历结点序列,递归求解即可。递归边界是叶子结点。

1:

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
char xian[10010],zhong[10010];
int a[10010];
void find(int zl, int zr, int yl, int yr)
{
	int i = a [xian[zl] - 'A'];
	int j = i - yl;
	int k = yr - i;
	if(j)
	{
		find(zl + 1, zl + i - yl, yl, i - 1);
	}
	if(k)
	{
		find(zl + i - zl + 1, zl, i + 1, yr);
	}
	cout << xian[zl];
}
int main()
{
	cin >> xian >> zhong;
	int len = strlen(xian);
	for(int i = 0; i < len; i++)
	{
		a[zhong[i] - 'A'
### 回答1: 由于中序和后序排列已知,可以通过递归的方式出先序排列。 先找到后序排列的最后一个元素,即为根节点。然后在中序排列中找到根节点的位置,将中序排列分成左子树和右子树两部分。接着递归处理左子树和右子树,直到叶子节点。 具体步骤如下: 1. 找到后序排列的最后一个元素,即为根节点。 2. 在中序排列中找到根节点的位置,将中序排列分成左子树和右子树两部分。 3. 根据左子树和右子树的元素个数,将后序排列分成左子树和右子树两部分。 4. 递归处理左子树和右子树,直到叶子节点。 5. 将根节点加入先序排列中。 最终得到的先序排列即为该二叉树的先序排列。 例如,给出中序排列为[4, 2, 5, 1, 6, 3, 7],后序排列为[4, 5, 2, 6, 7, 3, 1],则可以得到先序排列为[1, 2, 4, 5, 3, 6, 7]。 ### 回答2: 一棵二叉树的先序遍历需要知道它的根节点位置,而中序遍历和后序遍历无法直接确定根节点的位置。因此,我们需要先通过中序遍历和后序遍历构建出这棵二叉树,然后再进行先序遍历。 具体步骤如下: 1. 后序遍历的最后一个节点肯定是二叉树的根节点,假设它是节点p。 2. 在中序遍历中找到节点p的位置,它将中序遍历序列分成了左子树和右子树两部分。 3. 根据左右子树的长度,在后序遍历中将序列分成两部分,分别对应左子树和右子树的后序遍历。 4. 对左子树和右子树分别递归执行上述步骤,构建出左子树和右子树。 5. 将根节点p加入先序遍历序列中,然后依次加入左子树和右子树的先序遍历序列,即为最终的先序遍历序列。 举个例子,假设中序遍历为[4, 2, 5, 1, 6, 3, 7],后序遍历为[4, 5, 2, 6, 7, 3, 1]。根据上述步骤,可以构建出如下的二叉树: ``` 1 / \ 2 3 / \ / \ 4 5 6 7 ``` 由于后序遍历的最后一个节点是1,因此1是根节点。在中序遍历中,4和5在1的左侧,2在其左侧,6和7在其右侧,3在其右侧,因此左子树的中序遍历为[4, 2, 5],右子树的中序遍历为[6, 3, 7]。同理,左子树的后序遍历为[4, 5, 2],右子树的后序遍历为[6, 7, 3]。按照上述步骤分别构建出左子树和右子树即可。最终的先序遍历序列为[1, 2, 4, 5, 3, 6, 7]。 总结起来,通过中序遍历和后序遍历构建出二叉树的步骤如下: 1. 后序遍历的最后一个节点是二叉树的根节点。 2. 在中序遍历中找到根节点的位置,将中序遍历序列分成左子树和右子树两部分。 3. 根据左右子树的长度,将后序遍历序列分成左子树和右子树的后序遍历序列。 4. 分别对左子树和右子树递归执行上述步骤,构建出左子树和右子树。 5. 根节点加入先序遍历序列,然后依次加入左子树和右子树的先序遍历序列,得到最终的先序遍历序列。 ### 回答3: 我们可以使用递归的方式解这个问题。先看一下先序、中序和后序排列的定义: - 先序遍历:先访问根节点,再遍历左子树和右子树。 - 中序遍历:先遍历左子树,再访问根节点,最后遍历右子树。 - 后序遍历:先遍历左子树,再遍历右子树,最后访问根节点。 根据后序排列,我们可以得到该二叉树的根节点,然后在中序排列中找到根节点所在的位置,这将中序排列分成了左子树和右子树两部分。再根据左子树和右子树的节点数量,将后序排列也分成了左子树和右子树两部分。这时我们就可以递归地对左子树和右子树进行解,直到节点数量为1或0,即到达了叶子节点或者空节点。 对于每个子树,我们都可以通过递归得到它的先序排列。具体的方法是先输出根节点,再递归输出左子树和右子树的先序排列。 下面是一个Python实现: ```python def construct_tree(inorder, postorder): if len(postorder) == 0: return None root = TreeNode(postorder[-1]) index = inorder.index(postorder[-1]) left_inorder = inorder[:index] right_inorder = inorder[index+1:] left_size = len(left_inorder) right_size = len(right_inorder) left_postorder = postorder[:left_size] right_postorder = postorder[left_size:-1] root.left = construct_tree(left_inorder, left_postorder) root.right = construct_tree(right_inorder, right_postorder) return root def preorder_traversal(root): if root is None: return [] result = [root.val] result += preorder_traversal(root.left) result += preorder_traversal(root.right) return result inorder = [4,2,5,1,6,3,7] postorder = [4,5,2,6,7,3,1] root = construct_tree(inorder, postorder) print(preorder_traversal(root)) ``` 输出结果为:[1, 2, 4, 5, 3, 6, 7],即该二叉树的先序排列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值