💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
🏆Matlab毕设:
Matlab毕设系列–说明
🏆期刊发表:
发表北大核心,SCI不是梦!!
⛳️座右铭:行百里者,半于九十。
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理 (进阶版)
②付费专栏Matlab信号处理(初级版)
⛳️关注CSDN海神之光,更多资源等你来!!
⛄一、压缩传感的移动天线通信信道估计
1 压缩传感的基本原理
压缩传感(Compressed Sensing, CS)理论指出,若信号在某个变换域具有稀疏性,则可以通过远低于奈奎斯特采样率的观测数据重建原始信号。在移动天线通信中,信道冲激响应(CIR)通常表现出时域或频域的稀疏性,满足压缩传感的应用条件。
数学上,压缩传感模型可表示为:
y
=
Φ
h
+
n
\mathbf{y} = \mathbf{\Phi} \mathbf{h} + \mathbf{n}
y=Φh+n
其中:
- y \mathbf{y} y 为 M × 1 M \times 1 M×1 维观测向量
- Φ \mathbf{\Phi} Φ 为 M × N M \times N M×N 维测量矩阵( M ≪ N M \ll N M≪N)
- h \mathbf{h} h 为 N × 1 N \times 1 N×1 维稀疏信道向量
- n \mathbf{n} n 为加性噪声
2 信道稀疏性建模
移动通信信道通常表现为多径稀疏性,即少数路径占据主要能量。这种特性可通过以下方式建模:
- 时域稀疏性:多径信道中只有少量路径具有显著能量,其余路径接近零。
- 变换域稀疏性:在频域或离散余弦变换(DCT)等基下,信道响应可表示为稀疏向量。
稀疏基矩阵 Ψ \mathbf{\Psi} Ψ 的选择直接影响重建效果,常见选择包括:
- 离散傅里叶变换(DFT)基
- 离散小波变换(DWT)基
- 过完备字典(如K-SVD学习得到的字典)
3 测量矩阵设计
测量矩阵 Φ \mathbf{\Phi} Φ 需满足有限等距性质(RIP)或与稀疏基 Ψ \mathbf{\Psi} Ψ 不相关。常用设计方法包括:
- 随机高斯矩阵:元素服从独立同分布高斯随机变量
- 随机伯努利矩阵:元素以等概率取 ± 1 \pm 1 ±1
- 结构化矩阵:如部分傅里叶矩阵,降低硬件实现复杂度
在移动通信系统中,测量过程可通过导频信号的非均匀设计实现。例如,在OFDM系统中随机选择子载波发送导频符号。
4 稀疏信号重建算法
从观测数据 y \mathbf{y} y 重建稀疏信道 h \mathbf{h} h 的典型算法包括:
凸优化类算法
- 基追踪去噪(BPDN):
min ∥ h ∥ 1 s.t. ∥ y − Φ h ∥ 2 ≤ ϵ \min \|\mathbf{h}\|_1 \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{\Phi}\mathbf{h}\|_2 \leq \epsilon min∥h∥1s.t.∥y−Φh∥2≤ϵ - 最小角度回归(LARS)
贪婪算法
- 匹配追踪(MP)
- 正交匹配追踪(OMP)
- 压缩采样匹配追踪(CoSaMP)
贝叶斯方法
- 稀疏贝叶斯学习(SBL)
- 近似消息传递(AMP)
5 移动天线通信中的实现流程
1. 稀疏性分析
- 通过先验测量或理论分析确定信道的稀疏特性
- 选择适当的稀疏基 Ψ \mathbf{\Psi} Ψ
2. 测量系统设计
- 设计导频图案或训练序列,构建满足RIP的测量矩阵
- 确保导频开销远低于传统方法(如LS估计)
3. 压缩观测
- 发送设计好的导频信号
- 接收端获取观测向量 y \mathbf{y} y
4. 信道重建
- 选择重建算法(如OMP或SBL)
- 求解稀疏信道估计 h ^ \hat{\mathbf{h}} h^
5. 性能评估
- 计算均方误差(MSE)或系统误码率(BER)
- 验证估计精度是否满足通信需求
6 典型应用场景
- 大规模MIMO系统:利用天线域稀疏性降低导频开销
- 毫米波通信:极窄波束形成导致的空域稀疏性
- 高速移动场景:时变信道在延迟-多普勒域的稀疏性
7 性能影响因素
信道非理想稀疏性
- 实际信道可能存在近似稀疏性(非严格稀疏)
- 需要通过阈值处理或优化稀疏基提高重建效果
噪声干扰
- 测量噪声会破坏信号稀疏性
- 鲁棒算法设计(如加权 ℓ 1 \ell_1 ℓ1范数优化)可提升抗噪能力
计算复杂度
- 贪婪算法复杂度低但性能有限
- 凸优化算法精度高但计算量大,需硬件加速
⛄二、部分源代码和运行步骤
1 部分代码
2 运行步骤
(1)直接运行main即可一键出图。
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2019b
2 参考文献
[1]张善从,徐卓异,董众.基于粒子滤波的OFDM载波频偏和信道联合估计[J].现代电子技术. 2014
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置