题目是这样的
题目描述
在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。
每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。
例如有 3 种果子,数目依次为 1 , 2 , 9 。可以先将 1 、 2 堆合并,新堆数目为 3 ,耗费体力为 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 ,耗费体力为 12 。所以多多总共耗费体力 =3+12=15 。可以证明 15 为最小的体力耗费值。
输入格式
共两行。
第一行是一个整数 n(1≤n≤10000) ,表示果子的种类数。
第二行包含 n 个整数,用空格分隔,第 i 个整数 ai(1≤ai≤20000) 是第 i 种果子的数目。
输出格式
一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 231 。
输入输出样例
输入 #1
3 1 2 9
输出 #1
15
说明/提示
对于 30% 的数据,保证有 n≤1000;
对于 50% 的数据,保证有 n≤5000;
对于全部的数据,保证有 n≤10000。
以下是代码
//万能头函数
#include <bits/stdc++.h>
//命名文件
using namespace std;
//定义变量数组
long long n,a[10010] = {0},daan = 0;
//主函数main
int main(){
//输入
cin>>n;
for(int i = 1;i <= n;i++){
cin>>a[i];
}
//排序,方便查找
sort(a + 1,a + n + 1);
//前缀和,由于第一堆不用搬运,第二个是特殊的
for(int i = 2;i <= n;i++){
daan += a[i - 1] + a[i];
a[i] = a[i] + a[i - 1];
sort(a + i,a + n + 1);
}
//输出
cout<<daan;
return 0;//返回,结束
}