GAMES简介
GAMES(graphics and mixed environment symposium)是2016年初计算机学会(CCF)计算机辅助设计与图形学专委会成立的,作为我国的计算机图形学与虚拟现实的研究和交流合作平台。之后扩展到了在线学术交流平台Webinar(Web Seminar)
http://games-cn.org/about-games/
第一次课:图形学概论
图形学不是openGL,图形学包括了光栅化rasteration、曲线与曲面curves and meshes、光线追踪 ray tracing、动画/仿真animation/simulation.
第二次课:线性代数基础知识
向量点乘、叉乘,矩阵相乘
第三次课: Transform
均匀缩放 uniform scale、非均匀缩放 non-uniform scale、反射/对称 reflection、旋转 rotate、切变 shear
这些变换都可以表示成下面的式子 linear map
平移不再是线性变换,只能表示成下面的式子(abcd是单位矩阵)
affine map=linear map + translation
为了统一表示各种Transform,引入齐次坐标 homogeneous coordinate,其实就是多引入了一个维度
三维中(x,y,z,0)表示一个三维向量,(x,y,z,1)表示一个点,(x,y,z,1)和(2x,2y,2z,2)表示的是同一个点。
依次执行n个变换,变换矩阵依次左乘。
拿到变换结果可以分析出变换过程。例如:非原点发生的旋转可以平移到原点做旋转然后平移回去。
补充一下逆时针旋转 θ \theta θ,旋转矩阵是 R θ = [ c o s θ − s i n θ s i n θ c o s θ ] R_{\theta} = \begin{bmatrix}cos\theta & -sin\theta \\ sin\theta & cos\theta\end{bmatrix} Rθ=[cosθsinθ−sinθcosθ]
那么顺时针旋转 θ \theta θ就是上面的式子角度为 − θ -\theta −θ
R − θ = [ c o s θ s i n θ − s i n θ c o s θ ] = R θ T R_{-\theta} = \begin{bmatrix}cos\theta & sin\theta \\ -sin\theta & cos\theta\end{bmatrix}=R_{\theta}^{T} R−θ=[cosθ−sinθsinθcosθ]=RθT
由于顺逆时针旋转 θ \theta θ是一种互逆操作, R − θ = R θ − R_{-\theta}=R_{\theta}^{-} R