生成对抗网络GAN系列(六)--- CycleGAN---文末附代码

本文介绍了CycleGAN的基本原理和核心思想,它是一种无配对图像到图像转换的方法,旨在通过循环一致性的损失函数实现两个不同域之间的转换。文章详细阐述了Adversarial Loss和Cycle Consistency Loss,并提到了Identity Loss的重要性。同时,讨论了网络结构、实验细节以及采用的损失函数。最后,提供了作者复现的精简版PyTorch代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

---文末附代码

Jun-Yan Zhu      Taesung Park          Phillip Isola             Alexei A. Efros

Berkeley AI Research (BAIR) laboratory, UC Berkeley

1.概述

 

本篇提出的cycleGAN其实也是在做image to image translation,之前已经有较为成功的网络pix2pix了(其实是同一个团队的人做的),本篇论文的出发点和pix2pix的不同在于:

①pix2pix网络要求提供 image pairs,也即是要提供x和y,整个思路为:从噪声z,根据条件x,生成和真实图片y相近的y’。条件x和图像y是具有一定关联性的!

评论 35
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值