基本运算
调制
两个序列样本值的乘积,指的是将两个序列的样本值逐点对应相乘,从而得到新的序列:
y [ n ] = x [ n ] w [ n ] y[n]=x[n]w[n] y[n]=x[n]w[n]
在一些应用中,序列的乘积也叫做调制,实现该运算的器件称为调制器。
相乘
一个序列的每个样本值都乘以标量A以产生新的序列
y [ n ] = A x [ n ] y[n]=Ax[n] y[n]=Ax[n]
实现相乘运算的器件称为乘法器。
相加
把两个序列的样本值逐点的相加得到新的序列
y [ n ] = x [ n ] + w [ n ] y[n]=x[n]+w[n] y[n]=x[n]+w[n]
实现该运算的器件称为加法器。
时移
时移运算表现为
y [ n ] = x [ n − N ] y[n]=x[n-N] y[n]=x[n−N]
若 N > 0 N>0 N>0,则称之为延迟运算,若 N < 0 N<0 N<0则称之为超前运算。
单位延迟为延迟一个单位,即
y [ n ] = x [ n − 1 ] y[n]=x[n-1] y[n]=x[n−1]
在 Z Z Z变换中,延迟一个单位相当于乘以 z − 1 z^{-1} z−1,所以在方框图用 z − 1 z^{-1} z−1表示延迟一个单位
同理,单位超前一个单位可以写为
y [ n ] = x [ n + 1 ] y[n]=x[n+1] y[n]=x[n+1]
在 Z Z Z变换中,超前一个单位相当于乘以 z z z,所以在方框图用 z z z表示超前一个单位
反褶
序列的反褶表现为
y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[−n]
下面给出一些序列运算的例子,我将以图形的形式给出
![]() |
![]() |
调制

相加

单位延迟

单位超前

反褶

大多数的应用都是采用上述基本运算的组合。
卷积
x [ n ] x[n] x[n]和 h [ n ] h[n] h[n]为两个序列,这两个序列通过卷积后产生新的序列是
y [ n ] = ∑ m = − ∞ ∞ x [ m ] h [ n − m ] y[n]=\sum_{m=-\infty}^{\infty}x[m]h[n-m] y[n]=m=−∞∑∞x[m]h[n−m]
至于为什么会有卷积和这种运算,在离散时间系统那里详细介绍过,卷积和可以说是信号与系统分析中最重要的运算之一。
观察卷积的表达式,发现卷积也是由基本运算组成的:首先对 h [ m ] h[m] h[m]进行反褶得到 h [ − m ] h[-m] h[−m],然后进行时移运算,由 h [ − m ] h[-m] h[−m]得到 h [ − ( m − n ) ] = h [ n − m ] h[-(m-n)]=h[n-m] h[−(m−n)]=h[n−m],然后进行调制运算 x [ m ] h [ n − m ] x[m]h[n-m] x[m]h[n−m],最后进行相加运算得到 y [ n ] = ∑ m = − ∞ ∞ x [ m ] h [ n − m ] y[n]=\sum_{m=-\infty}^{\infty}x[m]h[n-m] y[n]=∑m=−∞∞x[m]h[n−m],所以一个卷积运算是由反褶,时移,调制,相加等基本运算组成的。
其实在实际的计算,计算过程就是由我上面所说的过程组成,从这里就可以看到,其实做卷积运算是比较麻烦的,在学习变换域时,有更好的办法进行卷积运算。
卷积和一般也写成 y [ n ] = x [ n ] ∗ y [ n ] = ∑ m = − ∞ ∞ x [ m ] h [ n − m ] y[n]=x[n]*y[n]=\sum_{m=-\infty}^{\infty}x[m]h[n-m] y[n]=x[n]∗y[n]=m=−∞∑∞x[m]h[n−m]
我们对上面的式子做一个变换,令 m = n − k m=n-k m=n−k,则:
y [ n ] = ∑ k = − ∞ ∞ h [ k ] x [ n − k ] = h [ n ] ∗ x [ n ] y[n]=\sum_{k=-\infty}^{\infty}h[k]x[n-k]=h[n]*x[n] y[n]=k=−∞∑∞h[k]x[n−k]=h[n]∗x[n]
所以卷积满足交换律。
不做卷积得到某一项的值
如何快速展开得到卷积某一项的值,比如想得到 y [ 2 ] y[2] y[2]的值。
假设 x [ n ] , w [ n ] x[n],w[n] x[n],w[n]的起点都是 0 0 0,那么可以快速写出 y [ 2 ] = x [ 0 ] w [ 2 ] + x [ 1 ] w [ 1 ] + x [ 2 ] w [ 0 ] y[2]=x[0]w[2]+x[1]w[1]+x[2]w[0] y[2]=x[0]w[2