pcl封装6 connection_cloud 提取聚簇后的每个点云

输入:inputcloud(ptr)

输入:min_size(int) 最小点云数

输入:max_size(int) 最大点云数

输入:distance_thr(float) 聚簇距离阈值

输出:点云簇的ptr(  vector<ptr>  )

过程:先聚簇,再对每个簇进行点云提取

与halcon3d里面的算子 connection_object_model_3d是一样的

//根据距离对点云聚簇,并返回聚簇后的点云的ptr的集合vector
template<class point5>
vector<class pcl::PointCloud<point5>::Ptr> connection_cloud(class pcl::PointCloud<point5>::Ptr input_cloud, float distace_thr = 0.001, int min_size = 3000, int max_size = 999999999)
{
	vector<pcl::PointCloud<point5>::Ptr> cloud_ptr_vector;
	vector<pcl::PointIndices> cluster_indices;
	pcl::EuclideanClusterExtraction<point5> euc_clu;
	euc_clu.setInputCloud(input_cloud);
	class pcl::search::KdTree < point5 >::Ptr tree(new pcl::search::KdTree < point5 >);
	euc_clu.setSearchMethod(tree);
	euc_clu.setClusterTolerance(distace_thr);//距离阈值
	euc_clu.setMinClusterSize(min_size);  //最小簇的点云数
	euc_clu.setMaxClusterSize(max_size);  //最大簇的点云数
	euc_clu.extract(cluster_indices);

	for (auto& indice : cluster_indices)
	{
		class pcl::PointCloud<point5>::Ptr cluster_p(new pcl::PointCloud<point5>);
		pcl::ExtractIndices<point5> extract_index;
		extract_index.setInputCloud(input_cloud);
		pcl::PointIndices::Ptr index_ptr(new pcl::PointIndices);
		*index_ptr = indice;

		extract_index.setIndices(index_ptr);
		extract_index.filter(*cluster_p);
		cloud_ptr_vector.push_back(cluster_p);
	}
	return cloud_ptr_vector;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值