Bellman-Ford算法

本文介绍了Bellman-Ford算法,适用于处理含有负权重的有向图,通过N-1轮更新寻找单源最短路径。算法基于动态规划思想,通过不断松弛操作更新节点距离。此外,文章还探讨了基于队列优化的SPFA算法,提高了处理稀疏图的效率,以及与Dijkstra算法的区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:
Single-Source Shortest Path:Bellman-Ford Algorithm
SPFA——基于Bellman-Ford的队列优化
How is the Bellman Ford algorithm a case of dynamic programming?
Shortest Path and Dynamic Programming Algorithms

算法简介

Bellman-Ford算法可以用于含有负权重的有向图中单源最短路径计算。他的本质是一种暴力求解,同时也运用了动态规划的思想。

算法思想

Bellman-Ford算法的思路是对于有N个节点的图,给定起点s,只要通过N-1轮更新(松弛操作),我们必定可以得到任意点到s点的最小代价dis。具体的证明在《算法》(第四版)里面有介绍。简要叙述如下:

1.将所有节点分为两类:已知最短距离的节点和剩余节点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值