前言
在实际开发过程中,如果使用Kafka处理超大数据量(千万级、亿级)的场景,Kafka消费者的消费速度可能决定系统性能瓶颈。
实现方案
为了提高消费者的消费速度,我们可以采取以下措施:
- 将主题的分区数量增大,如 20,通过
concurrency
将消费者的消费线程数增大到 10(2个pod),提高消息处理的并发能力。 - 将每次批量拉取消息的数量
max.poll.records
增大到 500,提高单次处理消息的数量。 - 将消息切分成批次,将单个批次的数据处理业务逻辑放进线程池中异步进行,提高并发处理消息的速度。
- 将异步线程池的拒绝模式调整为 CallerRunsPolicy,这个配置非常重要。当线程池的任务队列已满且所有线程都在忙碌时,新的任务将由提交任务的线程(即调用者线程)来执行。否则在消息量特别大的情况下,很可能会因为线程池任务队列满了而丢失数据。
- 将异步线程池的队列容量设置为 0,这样意味着所有任务必须立即由线程池中的线程来处理,减少在队列中的等待时间。
- 在数据上报的时候进行幂等性验证,防止重复上报数据。
@Component
public class OrderConsumer {
@Resource(name = "execThreadPool")
private ThreadPoolTaskExecutor execThreadPool;
@KafkaListener(
id = "record_consumer",
topics = "record"