【机器翻译】《Gradient-guided Loss Masking for Neural Machine Translation》论文总结

论文《Gradient-guided Loss Masking for Neural Machine Translation》探讨了机器翻译训练数据中的噪声问题。通过对比干净数据集和训练数据集的梯度方向,该方法在训练过程中对损失进行mask,过滤掉影响干净数据集损失增加的样本,以提高模型性能。这种方法可以应用于其他任务,提供了一种带噪学习的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Gradient-guided Loss Masking for Neural Machine Translation》icon-default.png?t=M666https://arxiv.org/pdf/2102.13549.pdf这篇论文聚焦机器翻译训练数据集中存在噪音数据的问题,旨在通过干净的数据集来在训练过程中引导模型忽略噪音数据,实现核心是根据干净数据集与训练数据集的训练梯度方向的一致性对Loss进行mask,从而屏蔽将造成干净数据集loss上升的样本影响。

针对问题

当前用于训练机翻模型的数据集中往往包含一些噪音数据,因为在构建过程中一部分数据是人工构建,一部分数据是通过自动化的方式快速构建,后者很难保证质量。训练数据中的噪音将影响机翻模型效果。因此,这篇论文针对这一个问题提出一种由干净数据集“引导”模型带噪学习。关于干净数据集,一方面可以人工从训练数据集中挑选构建,另一方面也可以选择标注质量高的测试集。

核心方法

在已有干净数据集、训练数据集的情况下,问题的关键在于如何用干净数据集来引导模型在训练过程中忽略噪音数据,进一步讲就是如何根据干净数据识别噪音数据。论文的提出的思路是:前向传播计算loss两次,一次计算干净数据集上的loss,另一次计算训练数据集上的loss,比较这两个lo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值