在当今社会,随着科技的飞速发展,汽车已成为人们日常出行的首选交通工具。然而,随着汽车保有量的不断增加,交通拥堵和停车难问题日益凸显。特别是在一些早期建设的旷野、路面型停车场,由于缺乏数字化和规范化的管理,车主常常需要花费大量时间寻找车位,而管理员也难以实时掌握停车场的空闲情况。为了解决这一问题,我们提出了一种基于无人机航拍和目标检测技术的智能停车解决方案。
一、现状与挑战
随着汽车的普及,停车场的需求也不断增加。现代化的大楼大厦通常配备地下停车场,在施工建设时就会规划好停车位,并通过显示屏实时显示车位的空闲情况,方便车主了解停车场内的车位使用情况。然而,许多早期建设的旷野、路面型停车场则缺乏这种数字化和规范化的管理。这些停车场往往只是在平地上简单规划停车位,然后随机停车,没有安装计数、显示等设备。这不仅不利于管理员及时了解停车场内的空闲情况,也给车主寻找车位带来了极大的不便。
二、无人机航拍与目标检测技术
为了解决这一问题,我们借助无人机航拍技术,通过无人机环绕指定的路面停车场进行航拍采集数据。这些数据将涵盖各种气象条件下的停车场情况,确保后续模型开发的需要。采集到的数据将交由专业的标注团队进行精确的车辆数据标注,为后续的目标检测模型提供高质量的训练数据。
目标检测模型的开发是整个解决方案的核心。通过深度学习算法,模型能够实时检测和分析航拍图像中的车辆数量、空位数量以及空闲车位的方位。这些信息将通过无人机搭载的算力板实时传输给管理员和车主,帮助他们在高峰期快速引导车辆进场和出场。
三、智能停车系统的实现
(一)无人机航拍
无人机航拍是整个系统的基础。无人机可以快速覆盖停车场的各个区域,采集高分辨率的图像数据。这些图像数据将作为后续目标检测模型的输入,为模型提供丰富的信息。无人机的灵活性和高效性使其成为采集停车场数据的理想工具。
(二)目标检测模型
目标检测模型是整个系统的核心。通过深度学习算法,模型能够实时检测和分析航拍图像中的车辆数量、空位数量以及空闲车位的方位。这些信息将通过无人机搭载的算力板实时传输给管理员和车主,帮助他们在高峰期快速引导车辆进场和出场。
(三)实时数据传输
实时数据传输是确保系统有效运行的关键。无人机搭载的算力板将处理后的数据通过无线网络实时传输给管理员和车主。管理员可以通过移动设备或监控系统实时查看停车场的空闲情况,车主则可以通过手机应用程序获取空闲车位的信息,快速找到停车位。
四、优势与效益
(一)提高资源利用率
通过智能停车系统,管理员可以实时了解停车场的空闲情况,合理安排车辆停放,提高停车场的资源利用率。同时,车主可以快速找到空闲车位,减少寻找车位的时间,提高停车场的运营效率。
(二)降低管理成本
传统的停车场管理需要大量的人力物力,管理员需要不断地巡视停车场,记录车位的使用情况。通过智能停车系统,管理员可以通过移动设备或监控系统实时查看停车场的空闲情况,实现一人管理多个停车场,极大地降低了管理成本。
(三)提升用户体验
智能停车系统为车主提供了极大的便利。车主可以通过手机应用程序实时获取空闲车位的信息,快速找到停车位,减少寻找车位的时间和精力。同时,系统还可以提供导航功能,引导车主快速到达空闲车位,提升用户的停车体验。
本文正是在这样的思考背景下,想要探索尝试从实验性质的角度出发开发构建智能化的停车场内车辆实时检测计数分析系统,在前面的系列博文中我们已经进行了很多相关的开发实践工作,感兴趣的话可以自行移步阅读即可:
《AI赋能守护行车安全新防线,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建驾驶车辆场景下驾驶员疲劳分心驾驶行为智能检测预警系统》
《AI赋能守护行车安全新防线,基于YOLOv7全系列【tiny/l/x】参数模型开发构建驾驶车辆场景下驾驶员疲劳分心驾驶行为智能检测预警系统》
《AI赋能守护行车安全新防线,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建驾驶车辆场景下驾驶员疲劳分心驾驶行为智能检测预警系统》
《AI赋能守护行车安全新防线,基于YOLOv9全系列【yolov9/t/s/m/c/e】参数模型开发构建驾驶车辆场景下驾驶员疲劳分心驾驶行为智能检测预警系统》
《无人机赋能停车场智能管理实现高效出行,基于YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建驾无人机航拍场景下停车场内车辆智能检测计数系统》
《无人机赋能停车场智能管理实现高效出行,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下停车场内车辆智能检测计数系统》
《无人机赋能停车场智能管理实现高效出行,基于最新以注意力为核心的YOLOv12全系列【n/s/m/l/x】参数模型开发构建无人机航拍场景下停车场内车辆智能检测计数系统》
《无人机赋能停车场智能管理实现高效出行,基于嵌入式端超轻量级模型LeYOLO全系列【n/s/m/l】参数模型开发构建无人机航拍场景下停车场内车辆智能检测计数系统》
本文主要是想要基于YOLO系列最新发表的超图增强型自适应视觉感知的目标检测模型YOLOv13全系列的模型来进行相应的开发实践,首先看下实例效果:
接下来看下实例数据情况:
在目标检测领域内YOLO系列实在是太卷了,短短一年的时间感觉版本都要迭代好几代了,前面YOLOv12都还没有焐热,现在清华的团队又发布了YOLOv13了,下面是对YOLOv13论文的阅读记录,感兴趣的话可以自行移步阅读即可:
YOLOv13模型整体架构如下所示:
官方项目地址在这里,如下所示:
官方发布了四个不同参数量级的模型,对应的预训练权重地址如下所示:
YOLOv13-N YOLOv13-S YOLOv13-L YOLOv13-X
项目整体是以ultralytics项目为基准构建的,所以整体的使用依旧是比较简洁的风格,实例实现如下所示:
#模型训练开发
from ultralytics import YOLO
model = YOLO('yolov13n.yaml')
results = model.train(
data='coco.yaml',
epochs=600,
batch=256,
imgsz=640,
scale=0.5, # S:0.9; L:0.9; X:0.9
mosaic=1.0,
mixup=0.0, # S:0.05; L:0.15; X:0.2
copy_paste=0.1, # S:0.15; L:0.5; X:0.6
device="0,1,2,3",
)
metrics = model.val('coco.yaml')
results = model("path/to/your/image.jpg")
results[0].show()
#模型评估测试
from ultralytics import YOLO
model = YOLO('yolov13{n/s/l/x}.pt') # Replace with the desired model scale
#模型推理预测
from ultralytics import YOLO
model = YOLO('yolov13{n/s/l/x}.pt') # Replace with the desired model scale
model.predict()
#模型格式转化
from ultralytics import YOLO
model = YOLO('yolov13{n/s/l/x}.pt') # Replace with the desired model scale
model.export(format="engine", half=True) # or format="onnx"
这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。
【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。
【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。
整体对比分析来看:不难发现四款不同参数量级的模型最终达到了较为相似的结果,这里综合参数量考虑我们最终选定了n系列的模型来作为线上的推理计算模型。
接下来看下n系列模型的详细情况。
【离线推理实例】
【Batch实例】
【混淆矩阵】
【F1值曲线】
【Precision曲线】
【PR曲线】
【Recall曲线】
【训练可视化】
随着人工智能和无人机技术的不断发展,智能停车系统将不断完善和优化。未来,我们可以进一步提高目标检测模型的精度和实时性,使其能够更准确地检测和分析停车场的情况。同时,我们还可以结合物联网技术,实现停车场设备的智能化管理,进一步提升停车场的运营效率和用户体验。总之,通过无人机航拍和目标检测技术,我们可以实现停车场的智能化管理,解决停车难的问题,提高资源利用率,降低管理成本,提升用户体验。这不仅为车主带来了便利,也为停车场管理者带来了高效的管理工具,为城市的交通管理提供了新的思路和方法。