随着人工智能(AI)技术的飞速发展,其应用领域正不断拓展,从最初的科研实验室逐渐渗透到我们生活的方方面面。在轮胎制造这一传统行业中,AI的引入正悄然改变着生产模式,为提质提效带来了前所未有的机遇。传统的轮胎生产模式中,质量检测往往依赖于经验丰富的工人,他们凭借肉眼和手感来判断轮胎的质量。然而,这种人工检测方式不仅效率低下,而且受限于人的工作时间、身体状况等因素,难以保证持续高效的工作状态。此外,人工检测还存在一定的主观性和误差率,难以确保产品质量的稳定性和一致性。
AI技术的引入为轮胎制造行业带来了全新的解决方案。借助于流水线的作业模式,通过在生产线上加装高清摄像头,可以实时捕捉轮胎生产的各个环节。这些摄像头将捕捉到的图像传输到AI系统中,通过图像识别和深度学习算法,系统能够自动分析轮胎的纹理、尺寸、形状等关键指标,从而快速准确地完成质量检测。在轮胎的工业生产场景下,X光检测技术发挥着至关重要的作用。通过X光图像,可以清晰地观察到轮胎内部的结构和缺陷。AI系统可以对大量的X光图像进行训练和学习,构建出高效的检测模型。这些模型能够自动识别轮胎内部的异常情况,如气泡、裂缝、异物等,并将结果以图像或数据的形式呈现出来,帮助工人快速定位问题并采取相应的处理措施。
AI检测模型的应用不仅提高了检测效率,还大大降低了人为因素的干扰。AI系统可以全天候不间断地工作,不受时间、天气等客观因素的影响。同时,随着数据量的不断积累,AI模型的学习能力也会不断增强,从而进一步提高检测的准确性和可靠性。
在前面的博文中,我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读即可:
《助力轮胎工业生产质检,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
《助力轮胎工业生产质检,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
《助力轮胎工业生产质检,基于YOLOv7【tiny/l/x】参数系列模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
《助力轮胎工业生产质检,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
《助力轮胎工业生产质检,基于YOLOv9全系列【yolov9/t/s/m/c/e】+GELAN全系列【gelan/t/s/m/c/e】参数模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
《助力轮胎工业生产质检,基于YOLO家族最新端到端实时算法YOLOv10全系列【n/s/m/b/l/x】参数模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
《助力轮胎工业生产质检,基于YOLOv11全系列【n/s/m/l/x】参数模型开发构建X光质量检测场景下轮胎缺陷智能检测识别系统》
本文主要是想要基于YOLOv12全系列的模型来进行相应的开发实践,首先看下实例效果:
接下来看下实例数据情况:
YOLO系列最近的迭代速度不可谓不快,可能感觉YOLOv11都还没有推出多久,YOLOv12就这么水灵灵地来了,下面是对YOLOv12论文的阅读记录,感兴趣的话可以自行移步阅读即可:
官方发布的预训练权重如下:
Turbo (default):
Model (det) | size (pixels) | mAPval 50-95 | Speed (ms) T4 TensorRT10 | params (M) | FLOPs (G) |
---|---|---|---|---|---|
YOLO12n | 640 | 40.4 | 1.60 | 2.5 | 6.0 |
YOLO12s | 640 | 47.6 | 2.42 | 9.1 | 19.4 |
YOLO12m | 640 | 52.5 | 4.27 | 19.6 | 59.8 |
YOLO12l | 640 | 53.8 | 5.83 | 26.5 | 82.4 |
YOLO12x | 640 | 55.4 | 10.38 | 59.3 | 184.6 |
v1.0:
Model (det) | size (pixels) | mAPval 50-95 | Speed (ms) T4 TensorRT10 | params (M) | FLOPs (G) |
---|---|---|---|---|---|
YOLO12n | 640 | 40.6 | 1.64 | 2.6 | 6.5 |
YOLO12s | 640 | 48.0 | 2.61 | 9.3 | 21.4 |
YOLO12m | 640 | 52.5 | 4.86 | 20.2 | 67.5 |
YOLO12l | 640 | 53.7 | 6.77 | 26.4 | 88.9 |
YOLO12x | 640 | 55.2 | 11.79 | 59.1 | 199.0 |
Model (seg) | size (pixels) | mAPbox 50-95 | mAPmask 50-95 | Speed (ms) T4 TensorRT10 | params (M) | FLOPs (G) |
---|---|---|---|---|---|---|
YOLOv12n-seg | 640 | 39.9 | 32.8 | 1.84 | 2.8 | 9.9 |
YOLOv12s-seg | 640 | 47.5 | 38.6 | 2.84 | 9.8 | 33.4 |
YOLOv12m-seg | 640 | 52.4 | 42.3 | 6.27 | 21.9 | 115.1 |
YOLOv12l-seg | 640 | 54.0 | 43.2 | 7.61 | 28.8 | 137.7 |
YOLOv12x-seg | 640 | 55.2 | 44.2 | 15.43 | 64.5 | 308.7 |
Model (cls) | size (pixels) | Acc. top-1 | Acc. top-5 | Speed (ms) T4 TensorRT10 | params (M) | FLOPs (G) |
---|---|---|---|---|---|---|
YOLOv12n-cls | 224 | 71.7 | 90.5 | 1.27 | 2.9 | 0.5 |
YOLOv12s-cls | 224 | 76.4 | 93.3 | 1.52 | 7.2 | 1.5 |
YOLOv12m-cls | 224 | 78.8 | 94.4 | 2.03 | 12.7 | 4.5 |
YOLOv12l-cls | 224 | 79.5 | 94.5 | 2.73 | 16.8 | 6.2 |
YOLOv12x-cls | 224 | 80.1 | 95.3 | 3.64 | 35.5 | 13.7 |
一共提供了n、s、m、l和x五款不同参数量级的模型。
这里我们保持完全相同的实验参数设置来进行四款模型的开发训练,等待训练完成之后我们来整体进行各项指标的对比分析。
【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。
【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。
【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。
【loss曲线】
在深度学习的训练过程中,loss函数用于衡量模型预测结果与实际标签之间的差异。loss曲线则是通过记录每个epoch(或者迭代步数)的loss值,并将其以图形化的方式展现出来,以便我们更好地理解和分析模型的训练过程。
【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。
整体对比分析来看:不难发现五款不同参数量级的模型最终达到了较为相似的结果,没有拉开非常大的差距,这里综合参数量考虑我们最终选定了s系列的模型来作为线上的推理计算模型。
接下来看下s系列模型的详细情况。
【离线推理实例】
【Batch实例】
【混淆矩阵】
【F1值曲线】
【Precision曲线】
【PR曲线】
【Recall曲线】
【训练可视化】
AI在轮胎制造领域的应用还远不止于此。未来,随着技术的不断进步和应用的不断深化,AI将能够贯穿整个生产过程,实现全流程的智能化控制和管理。从原材料采购、生产计划制定、设备维护到产品追溯等方面,AI都能够发挥巨大的作用,推动轮胎制造行业向更高效、更智能、更绿色的方向发展。AI的普及发展正在为轮胎制造行业带来深刻的技术变革。通过引入AI技术,我们可以实现更高效、更精准的质量检测,提高产品的质量和稳定性,同时降低生产成本和人力投入。本文仅作为抛砖引玉,未来,随着技术的不断进步和应用的不断深化,我们有理由相信,AI将在轮胎制造行业中发挥越来越重要的作用,引领行业走向更加美好的未来。