python中文分词(思路+demo)

这篇博客介绍了Python中使用结巴分词结合自定义词库和字典树进行中文分词的过程。文章涵盖了整体架构、数据预处理和分词状态的详细解释,并提及了在数据加工阶段应用维特比算法进行词义消歧。最后,还给出了一个演示示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先,我们先看一个整体架构图


一、分词框架

      整体采用结巴分词+自定义词库+字典树的模式进行分词优化。处理流程为:原生数据—>文本清理—>特定预处理—>标识化处理—>罕见词/停用词等移除—>词库匹配—>输出数据

      同时,制定以下规则:
      1、词库匹配时只输入名词性字符。
      2、在标识化处理过程中,指定自己定义的字典,其目的在于虽然可以通过Viterbi算法识别出新词,但自行添加新词库可以保证更高的正确率

      对于分词状态,由于jieba分词中使用的是4-tag,因此我们以4-tag进行计算。4-tag,也就是每个字处在词语中的4种可能状态,B、M、E、S,分别表示Begin(这个字处于词的开始位置)、Middle(这个字处于词的中间位置)、End(这个字处于词的结束位置)、Single(这个字是单字成词) 

二、数据再加工

      在原始数据进行词库匹配之前,会对原始数据进行加工处理,筛除掉所有特殊字符、各种进制编码、各种品牌、功能性描述语言,然后根据词性只保留名词类词组,用于简单的词义消歧,最后,再将所得的结果拼接成字符串与词库(通过字典树的方式)进行匹配。

      关于维特比算法:该算法致力寻找一条最佳路径,以便最好地解释观测到的序列。本质上,即为多步骤每步多选择模型的最优选择问题viterbi算法是隐马第三个问题(求观察序列的最可能的标注序列)的一种实现方式。viterbi算法其实就是多步骤每步多选择模型的最优选择问题,其在每一步的所有

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值