一、介绍
RetinaFace是一款实用的单级SOTA人脸检测模型,整个模型整合了:人脸检测、人脸对齐、像素级的人脸分析、3D密集通信回归。
虽然在未受控制的人脸检测方面取得了巨大进步,但野外准确有效的面部定位仍然是一个开放的挑战。这篇文章提出了一个强大的单阶段人脸检测器,名为RetinaFace,它利用联合监督和自我监督的多任务学习,在各种人脸尺度上执行像素方面的人脸定位。
具体来说,我们在以下五个方面做出了贡献:
- (1)我们在WIDER FACE数据集上手动注释五个面部标志,并在这个额外的监督信号的帮助下观察硬面检测的重要改进。
- (2)我们进一步增加了一个自监督网格解码器分支,用于与现有的受控分支并行地预测像素三维形状的面部信息。
- (3)在WIDER FACE硬测试装置上,RetinaFace的性能优于现有技术平均预测(AP)1.1%(达到AP等于91.4%)。
- (4)在IJB-C测试集上,RetinaFace使最先进的方法(ArcFace)能够改善他们在面部验证中的结果(FAR = 1e-6的TAR = 89.59%)。
- (5)通过采用轻量级骨干网络,RetinaFace可以在单个CPU内核上实时运行,以实现VGA分辨率的显示。
论文地址:
https://arxiv.org/pdf/1905.00641.pdf
Github地址:(基于Python平台,MXNet框架)
https://github.com/deepinsight/insightface/tree/master/RetinaFace
数据:
https://pan.baidu.com/s/1Laby0EctfuJGgGMgRRgykA
http://shuoyang1213.me/WIDERFACE/WiderFace_Results.html