自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(913)
  • 收藏
  • 关注

原创 经济大环境不好,软件业却“逆风翻盘”!2025上半年这波行情,打工人到底该喜还是该忧?

2025年上半年我国软件和信息技术服务业逆势增长,收入达7.06万亿元,同比增长11.9%。信息技术服务成为支柱产业,占比68.5%,其中云计算、大数据和集成电路设计表现突出。区域发展呈现东强西稳态势,长三角增速达13.7%,上海以18%领跑全国。AI技术正深刻改变行业生态,61.8%开发者已使用AI辅助编程,但复杂创新工作仍需人工主导。未来行业将聚焦云原生与AI融合、软件安全、工业软件国产化等领域,建议从业者提升架构设计、云原生等核心能力,积极拥抱AI工具。

2025-08-04 15:14:01 3488

原创 【保姆级教程】程序员转型AI工程师指南:快速学习AI大模型应用开发!

随着AI大模型应用爆发,相关岗位需求激增(月薪28K+)。本文梳理了从后端转型AI大模型工程师的学习路径:1)掌握Python及PyTorch/TensorFlow框架;2)熟悉Transformer架构及模型训练部署全流程;3)精通RAG、Prompt工程等核心技术;4)实践LangChain等开发平台。学习分四阶段:基础应用(10天)、高阶开发(30天)、模型训练(30天)、商业落地(20天),包含提示词工程、智能体开发等实战内容。作者提供免费学习资料包(思维导图/案例手册/视频教程),助力开发者抓住A

2025-08-22 17:14:24 497

原创 DeepSeek V3.1版本更新体验:实际使用感受与功能解析!

DeepSeek模型升级至V3.1版本,主要更新包括上下文长度扩展至128k、取消R1标识统一使用V3.1模型,并优化了推理性能。实际测试显示编程能力提升但创意输出受限,建议配合复杂提示词使用。同时文章分享了大模型学习路径,包含提示词工程、RAG系统开发等四个阶段,并附赠AI学习资料包。该内容适合开发者了解模型升级特性及AI技能进阶路线。

2025-08-22 17:12:37 403

原创 DeepSeek模型V3.1升级:10万字长文支持,开启文本处理新纪元

DeepSeek 官方发布通知,线上模型已经升级到 V3.1 版本啦!这次更新可太牛了,上下文长度直接拓展到 128k,这意味着它能处理和记住更多的文本内容,以后用它分析长文档、理解代码库,或者进行超长时间的对话,都能稳稳拿捏~

2025-08-22 17:10:04 610

原创 2025年AI产品经理学习路线:从零基础到精通,适合小白与程序员的全资源指南!

AI产品经理与传统产品经理在思考框架上相似,都需要经历产品全生命周期管理,但思维模式不同。AI产品经理以技术为驱动,需深入理解数据、算法及场景应用。根据公司类型可分为AI公司和非AI公司两类,岗位要求各有侧重。此外,AI产品还可按使用群体分为ToB(侧重业务效果)、ToC(侧重用户体验)和AI硬件(侧重场景运维)三类。核心技能要求除通用产品能力外,更强调对AI技术、数据及效果评估的理解与应用能力。

2025-08-21 13:40:27 1008

原创 2025年大模型面试题库:最常见高频面试题及答案,建议收藏!

本文总结了大模型和注意力机制相关的高频面试问题及解答要点。这些内容系统覆盖了大模型与注意力机制的核心知识点,为相关技术面试提供了全面的准备参考。

2025-08-21 11:54:51 532

原创 LLM微调方法全解析:六大主流方法思路讲解与优缺点对比!

摘要:本文综述了大型语言模型(LLM)的高效微调方法。针对LLM参数量大、微调成本高的问题,研究者提出了多种参数高效微调技术,主要包括Adapter tuning、Prefix tuning、Prompt tuning、P-tuning及其v2版本、LoRA等方法。这些方法通过固定预训练模型参数,仅微调少量新增参数(通常占总参数0.1%-5%),在保持模型性能接近全参数微调的同时,显著降低计算成本和存储需求。实验表明,这些方法在10B参数以上的大模型中效果尤为突出,部分技术在小模型上也展现良好效果。

2025-08-21 11:50:09 536

原创 AI、机器学习与大模型分别十什么含义?探索现代科技的核心,揭秘未来生活的变革!

随着科技的不断进步,人工智能(AI)、机器学习(ML)和大模型(Large Models)成为了现代计算机科学领域的核心技术。它们不仅推动了科学研究的进步,也在多个行业中掀起了革命性的变革。从自动驾驶汽车到智能语音助手,再到精准医疗和金融预测,这些技术的应用已经深入到我们日常生活的方方面面。本文将深入探讨这三大技术的基本概念、历史发展、实现原理及其在实际生活中的应用,旨在为读者提供一个全面而深入的了解。

2025-08-21 11:48:43 272

原创 【万字长文】国产之光DeepSeek:三大突破如何改写AI规则,架构理解与应用分析全解析!

对于人工智能大模型当下的发展阶段,如何落地,并在横向领域发挥出作用成为越来越被关注的话题,笔者的朋友提出了几个问题:DeepSeek的用处除了在信息库里提取提问者需要的有效信息外还有别的功能吗?像这类人工智能有没有跟实体产业,比方说机械电子工程产业的具体结合案例?

2025-08-21 11:45:42 403

原创 30+传统产品经理逆袭AI时代:学习AI,掌握这些底层逻辑,站在AI之上看问题,让AI成为你升职加薪的利器!!

在AI大模型重构产业格局的当下,仅擅长绘制原型和撰写需求文档的产品经理正面临职业危机。**企业迫切需要的,是既能深谙算法逻辑、解码技术内核,又能连接业务场景与AI潜能的跨界融合型人才,而非停留在“需求传声筒”阶段的传统角色**。这波AI浪潮正以“不学习就会被淘汰”的残酷法则,重塑职场生态。

2025-08-20 16:47:10 467

原创 2025年AI产品经理面试真题:100道真题自测,看你能得几分?

本文系统梳理了AI产品经理需要掌握的技术、产品、管理、商业化和伦理合规五大核心能力。技术篇涵盖25个算法基础和工程落地问题,产品篇详解20个需求分析与设计要点,管理篇提炼15个跨部门协作方法论,商业化篇提供15种变现策略,伦理篇强调合规红线。最后附大模型学习路线和100套落地方案,内容涵盖技术选型、指标设计、风险控制等实战经验,为AI产品从业者提供全方位的知识框架和实践指南。

2025-08-20 16:41:38 1326

原创 【字节跳动二面】什么是MoE架构?

摘要:本文介绍了大语言模型中的混合专家架构(MoE)及其应用。MoE通过多个专家网络和门控系统实现高效训练和推理,已在DeepSeek V3/R1和Mixtral等模型中成功应用。文章对比了传统稠密模型与MoE稀疏模型的结构差异,详细分析了Mixtral和DeepSeek的MoE实现方式,包括门控网络、专家选择和权重计算等关键环节。DeepSeek MoE的创新点在于细粒度专家划分和共享专家机制。最后,文章提供了AI大模型的学习路线和资源获取方式。

2025-08-20 11:40:17 573

原创 【万字长文】LangChain入门教程:小白也能构建基于知识图谱的RAG系统!

本文探讨了在使用小型量化LLM构建基于知识图谱的RAG系统时面临的核心挑战:从非结构化数据中准确提取节点和关系的困难。作者比较了LangChain的严格JSON解析方法和BAML的模糊解析方法,通过实验证明BAML能将提取成功率从25%提升到99%以上。文章详细介绍了数据集初始化、模型量化、BAML集成、Neo4j图谱分析等步骤,展示了如何通过社区检测算法构建层次化知识图谱。最终证明BAML的鲁棒解析结合LangChain的编排能力,是构建高效AI应用的有效方案。所有代码已开源在GitHub仓库中。

2025-08-20 11:36:09 867

原创 开源Agent/Workflow框架大比拼:我只推荐这5个,高效开发AI应用的秘诀!

这篇万字综述《ASurveyonAgentWorkflow》系统分析了20+主流Agent框架,揭示了AgentWorkflow的核心机制:通过任务拆解、流程编排实现多Agent协同。文章对比了框架在规划能力、工具调用、记忆机制等维度的差异,并给出选型建议:Langchain适合快速验证,LangGraph适用复杂场景,AutoGen侧重团队协作模拟,ReWoo则更经济高效。随着AI进入"自主普适"新阶段,掌握大模型全栈开发能力将成为关键竞争力。

2025-08-20 11:24:27 261

原创 【美团秋招一面】AI岗位面试面试指南!外加2025年大模型面试题合集,一篇文章让你轻松应对面试挑战!

社招先是确认之前的AI项目经验,一般来说,简历上没AI经验的,到不了面试环节,或者简历上只有跑通AI学习项目的,或者是只体现出是培训班出来的,基本不会给面试机会。简历上确认AI项目方式是,项目描述里,看下用到AI哪些技术?单纯用AI生成文本或代码的不算,得写代码调用接口方法,或者搭建过或训练过AI模型。

2025-08-19 14:52:37 787

原创 IT毕业生转型指南:程序员转行AI,入门大模型的经验分享,助你少走三年弯路,快速成为AI行业精英!

大模型技术快速普及,吸引大量转行者关注。文章从实践角度解析入行大模型的四大方向(数据/平台/应用/部署)及对应人群,指出新人常见的三大误区(盲目追技术、忽视工程能力等),并强调"先掌握AI者更具竞争力"。为帮助学习者高效入门,作者联合专家团队整理出104G系统化学习资源包,涵盖视频教程、路线图、电子书及面试题,适合零基础到进阶者,尤其面向应届生、转行者和传统开发者,通过实战项目培养AI核心能力。资源免费领取,旨在降低学习门槛,助力职业转型。

2025-08-19 14:37:56 1459

原创 实战指南:基于RAG和Claude的智能文档聊天系统,轻松打造高效沟通工具!

最近我和一个律师亲戚聊AI时,问了我应该怎么对现在律师事务所庞大的文档做AI检索,从技术上讲用现在的LLM+RAG可以满足需求,但细想不太对劲,因为这里面涉及到很多专业知识,还有律师的专有思维路径,一个不懂律师业务的程序员肯定是做不好的,于是有幸跟他们合伙人进行了深入沟通,合伙人说了一堆但我总结下来就这么一句话

2025-08-19 10:46:50 827

原创 AI来了,教育行业将如何变革?

人工智能正在深刻变革教育行业:1)智能教育通过AI技术实现个性化教学和教育信息化;2)在线教育打破时空限制,覆盖全年龄段;3)兴趣教育课程日益丰富。AI赋能教育主要体现在:智能生成学习资料、多模态互动学习、精准化教学、作业批改自动化等方面,显著提升教学效率。AI技术让学习方式更个性化、碎片化和趣味化,尤其对儿童教育具有显著优势。为帮助学习者掌握AI技术,提供从入门到进阶的104G全套学习资源包,包含视频教程、学习路线、电子书籍和面试指南等,适合各类人群学习转型。

2025-08-19 09:52:09 881

原创 什么是AI大模型Agent(智能体)快速入门?5分钟彻底搞懂

本文系统介绍了LLMAgent(大模型智能代理)及其与RAG(检索增强生成)技术的结合应用。LLMAgent是基于大型语言模型开发的智能系统,具备规划、记忆、工具和行动四大核心模块,能实现任务分解、知识存储、环境感知和决策执行。文章着重分析了LLMAgent+RAG在财报分析中的应用,通过动态知识检索提升专业领域表现,并详细阐述了构建智能财报分析系统的七个关键步骤。最后提供了AI大模型学习路径,包含七个阶段的学习内容和资源获取方式,涵盖从系统设计到行业应用的全栈技能培养。

2025-08-19 07:00:00 493

原创 AI产品经理面试100问速成八股文:三天背完,一周斩获五个高薪offer!

本文主要介绍了AI产品经理面试中需要重点掌握的四大技术模块:Attention机制、Transformer模型、BERT预训练模型和ChatGPT原理。针对Attention机制,详细解析了其概念、流程及与Self-attention的关系;在Transformer部分,讲解了其结构原理、自注意力机制、多头注意力等核心组件;对BERT模型,涵盖了预训练方法、输入形式及改进方向;最后剖析了ChatGPT的RLHF训练原理和现存缺陷。同时提供了两个典型的AI产品经理面试问题:如何处理数据质量问题及产品落地中的工

2025-08-18 17:52:11 583

原创 想要转行算法工程师?这里有一些建议和经验分享,助你成功转型!

互联网算法岗高薪吸引众多求职者,但需具备静心、数据分析、动手能力等核心素养。算法工程师需持续学习新技术,职业发展路径从初级到高级难度递增,晋升依赖业务发展机遇。文章提供AI算法工程师学习路线和资料,包括系统设计、提示词工程、平台开发等七个阶段,帮助从业者提升技能应对行业竞争。

2025-08-18 16:49:16 753

原创 GPT-5高阶玩法大揭秘:AI智能体时代来临,从聊天到实战一网打尽!

过去,我们用AI,像是使用一把瑞士军刀。你说一个指令,它执行一个动作。而GPT-5的目标,是成为你的“自动导航汽车”——你设定目的地,它自己规划路线、应对路况、直至抵达终点。这就是 “智能体工作流”(Agentic Workflow) —— GPT-5最核心的进化。在官方指南中,OpenAI花了大量篇幅教开发者如何“管理”这位新员工。

2025-08-18 10:21:14 709

原创 AI提示词系统入门指南:轻松让AI更懂你的需求!

本文介绍了AI提示词系统的核心构成与协同工作流程。系统提示词(SystemPrompt)为AI设定长期角色、能力边界和安全规则,相当于"智能体入职手册";用户提示词(UserPrompt)则提供即时具体的任务指令。两者协同工作时,AI首先遵循系统提示词的框架,再处理用户提示词的具体需求。文章还分享了DeepSeek提示词库的高级用法——通过"大模型提示词生成专家"可快速创建专业领域的结构化提示词,并支持多次迭代优化。最后提供了系统性思维Prompt模板,帮助用户对任意

2025-08-18 10:18:32 750

原创 谷歌AI Agent白皮书深度解读:揭秘企业级AI智能体落地的3大核心逻辑!

本文深入解读了AI智能体从实验室到生产环境落地的三大核心逻辑。首先剖析了AI智能体的三大构成要素(模型、工具、编排层),其次阐述了智能体运营方法论(工具管理、步骤追溯、持续优化),最后提出了多维度的智能体评估体系(基础能力、做事步骤、评分机制)。文章还探讨了多智能体协同的价值,并介绍了谷歌AI联合科学家等成功案例。全文强调AI智能体落地需满足体系化、可评估、善协作三大特性,为读者提供了理解AI智能体商业应用落地的系统性框架。

2025-08-18 10:16:09 906

原创 【万字长文】LangGraph代理:法律信息结构化新突破,知识图谱助力答案准确性提升!

本文探讨了利用GraphRAG技术构建法律合同知识图谱的解决方案。通过将合同文本转化为结构化知识图谱存储在Neo4j中,并结合LangGraph代理系统,实现了对法律合同的智能化查询和分析。文章详细介绍了从合同文本中提取结构化信息的方法、知识图谱构建过程、查询工具设计以及基准测试结果。相比传统向量检索方法,GraphRAG能够更准确地处理法律合同特有的结构化语言和复杂关系,有效解决了无关信息检索和上下文理解不足等问题。实验表明,该方法在合同分析任务中表现良好,GPT-4o等模型在聚合查询中的表现优于其他模型

2025-08-17 09:00:00 776

原创 Coze工作流实战:探索动物进化史,视频工作流深度解析!

摘要: Coze是字节跳动推出的智能体开发平台,提供从脚本生成到视频制作的一站式工作流解决方案。其核心功能包括:1)基于主题自动生成古生物演化时间轴脚本;2)根据脚本生成高精度配图提示词;3)通过Doubao-Seedance大模型实现图文转视频。平台支持剪映草稿创建、BGM添加等后期处理,并提供AI大模型学习资源包(含104G资料)。该工作流特别适用于科普内容创作,通过严格的时间轴规范和写实风格的视觉提示词,确保科学性与视觉效果的专业性。

2025-08-17 08:00:00 437

原创 8年程序员本以为到头了,没想到柳暗花明...有时候真是选择大于努力

《从程序员到AI产品负责人的转型之路》讲述了一位前端开发者在职业瓶颈期抓住AI机遇的故事。2022年底ChatGPT爆发后,作者经历AI技术学习困境,转而聚焦AI产品应用层,通过挖掘业务场景、组建团队实践,最终推动企业产品AI升级并成功转型为AI产品负责人。文章强调在AI浪潮中,把握应用机会比钻研底层技术更重要,并分享了TOB/TOC场景的AI落地经验。作者认为AI不会完全取代程序员,但会重塑岗位需求,建议从业者抓住时代机遇实现职业跃迁。

2025-08-16 17:35:31 967

原创 AI大模型落地应用指南:LLM、RAG、Workflow、Agent,谁是最优解?

【摘要】本文探讨AI大模型应用落地的技术选型问题,围绕LLM、RAG、Workflow、Agent和Multi-Agent等方案的争议展开分析。核心结论:1)RAG与长上下文模型互补,数据量大/实时/敏感场景优先选RAG;2)Workflow与Agent需混合使用,标准化流程用Workflow,动态决策用Agent;3)Multi-Agent适用可拆解验证的任务,否则选单Agent。决策应基于场景需求,平衡通用性与专业性、自主性与可控性、成本与性能,技术选型没有最优解,适合的才是最好的。

2025-08-16 11:16:24 1006

原创 人形机器人运动会爆笑瞬间:鬼畜名场面合集,欢乐不容错过!

首届人形机器人运动会爆笑开赛:1500米冠军"肇事逃逸",足球赛变"群殴",拳击手会嘲讽。宇树机器人包揽多项冠军,1500米创造世界纪录。比赛现场状况百出:机器人集体"摆烂"、守门员擅离职守、选手突然"卡机"。解说全程高能,AI术语取代传统体育解说。赛事亮点包括:机器人足球5V5实时算法对抗、拳击手最后时刻"压哨站起"、以及专门设计的"嘲讽连招"。这场科技与娱乐的跨界盛会,展现了人形机器人运动的最新进展和"翻车"日常。

2025-08-16 11:14:02 457

原创 Java程序员转型AI大模型的学习路线,超详细,还有学习路线图、书籍、课程等免费资料,一定记得收藏!

本文为Java开发者转型AI领域提供了一套五阶段系统学习路径。第一阶段(1-2个月)聚焦Python速成与数学基础补缺,强调Java工程思维的迁移应用;第二阶段(2-3个月)掌握机器学习核心算法和Transformer原理;第三阶段专攻大模型三大高薪技能:Prompt工程、RAG系统和Agent开发;第四阶段实现Java与AI的工程化整合;最后阶段提供求职策略与持续学习建议。全文突出"工程优先"理念,提供具体技术栈组合(如SpringAI+LangChain4J)、性能优化方案(ONNX

2025-08-15 17:13:49 873

原创 【AI 赋能企业数据治理】揭秘 AI 大模型如何解决企业数据治理三大矛盾,助力中小企业智能化转型,提升效益,降低成本!

随着数据要素成为企业核心资产,传统"人治"数据治理模式面临效率、成本和质量瓶颈。AI大模型技术推动数据治理向"智治"转型,通过多模态理解、动态知识图谱和联邦学习三大技术支柱,构建五层智能治理体系。金融等行业实践表明,智能治理可提升风险管控、业务赋能和合规效率。企业实施需遵循能力演进路线和组织变革,培养复合型人才团队。AI大模型技术正创造高薪岗位,掌握相关技能将获得竞争优势。免费资源包提供从入门到实战的系统学习路径,助力从业者把握AI时代机遇。

2025-08-15 17:11:01 1340

原创 Coze工作流揭秘:关键词输入,自动抓取小红书热门笔记,运营效率大提升!

摘要:本文介绍了一个自动化采集小红书热门笔记的工作流,通过输入关键词自动抓取数据并存入飞书多维表格,提高自媒体运营效率。工作流包含三个主要部分:1)准备工作(创建飞书表格、获取小红书cookie);2)工作流搭建(搜索、筛选、采集、去重、存储等步骤);3)AI大模型学习建议,包括学习路径和资源分享。该工具仅限学习交流,强调AI时代掌握新技术的重要性,并提供了从入门到实战的AI学习路线图和免费资料获取方式。(149字)

2025-08-15 13:47:00 628

原创 什么是混合专家模型?

混合专家模型(MoE)是一种基于Transformer架构的稀疏门控深度学习模型,由门控网络和多个专家网络组成。其核心思想是将输入数据分类后分配给特定专家处理,实现"术有专攻"。相比稠密模型,MoE在相同计算预算下能实现更大规模训练,预训练效率更高,推理速度更快。但MoE也存在训练挑战(如微调时易过拟合)和推理挑战(高内存需求)。当前研究方向包括模型蒸馏、专家聚合和极致量化等。国内外已开源多个MoE模型,如DeepSeek-MoE、Mixtral等。学习大模型AI需要系统掌握提示工程、R

2025-08-15 13:38:43 540

原创 AI Agent构建挑战:工程量为何往往超出预期?

本文揭示了将AI代理(Agent)从原型转化为实际产品过程中面临的十大工程挑战,包括需求模糊性、外部系统集成成本、非确定性测试难题、安全合规要求、运维复杂性、跨学科团队组建、知识库管理、长尾问题处理、持续成本结构等。文章指出,企业往往低估了AI代理落地的实际工程量,需要建立可观测性、分层架构、AgentOps团队等系统性解决方案,并强调长期维护成本远超开发成本。最后提供了从需求边界到合规预研的七项实践建议,帮助将工程挑战转化为可管理目标。文末附赠AI大模型学习资料包,涵盖提示工程、RAG系统、智能体开发等实

2025-08-15 13:36:09 820

原创 国内用户福利:Claude Code无翻墙Windows部署教程,轻松上手!

Claude Code 是目前公认最好用的AI编程工具,但是 Claude Code 却不支持在 Windows 系统直接使用,需要通过基于WSL安装的虚拟操作系统(如 Ubuntu 24.04 LTS)才可使用。下面将教你如何在 Windows 上通过WSL安装和部署 Claude Code ,并且接入API,无需翻墙订阅,国内用户也能流畅使用 Claude Code 的方法。

2025-08-15 13:34:29 789

原创 OpenAI新员工揭秘:LeetCode刷100小时,内推秘籍大公开,AI领域梦想Offer等你拿!

OpenAI 在 AI 领域引领了一波又一波浪潮,想必很多人好奇,这些创新背后的研究人员是如何通过面试的?尤其是现在,OpenAI 已经成为全球最受瞩目的 AI 公司之一,吸引了无数顶尖人才投递简历。想要加入这个团队,着实不容易。近日,一位入职 OpenAI 不到两个月的新研究员 Bas van Opheusden 分享了他的求职经历,面试指南长达 8 页。

2025-08-15 09:55:41 465

原创 失业程序员逆袭AI工程师:快速转型大模型学习路线,一步到位!

针对程序员背景的AI学习路线,设计了3个月分阶段速成方案:1)基础阶段(1-4周)聚焦Python数据科学生态和机器学习算法实现;2)深度学习阶段(5-8周)掌握PyTorch框架和模型训练技巧;3)工程化阶段(9-12周)完成模型部署和全栈项目开发。方案突出"代码优先"原则,强调通过Kaggle实战、GitHub项目拆解等方式快速转化编程优势为AI能力,每周设置明确产出目标,最终形成3个完整作品集。学习资料包含精选视频课程、技术文档和实战项目模板,建议每日4小时理论+实践+复盘的高效学习模式。

2025-08-14 17:37:25 812

原创 百度、腾讯、阿里大模型面试全攻略:从一面到三面的真实经历分享!

本文汇总了百度、腾讯、阿里等大厂的大模型算法岗面试经验。百度面试侧重基础知识(模型结构、位置编码、RLHF等)和代码能力,三面考察综合能力;腾讯关注机器学习基础、大模型微调及多模态知识;阿里重点考察多模态模型原理和Transformer细节。整体来看,大模型岗位面试普遍注重:1. 对主流模型架构的深入理解 2. 预训练/微调/RLHF全流程掌握 3. 实际问题解决能力 4. 代码实现功底。文末提供了104G大模型学习资源包,包含视频教程、学习路线、面试真题等,适合不同基础的学习者系统提升大模型技术能力。

2025-08-14 17:32:49 1084

原创 xAI联创Igor Babuschkin官宣离职创业!Grok 4痛失大将!

xAI联合创始人Igor Babuschkin宣布离职创业,结束在xAI两年的工作。作为AlphaStar项目负责人和AI领域专家,他主导构建了全球最大AI超算Colossus,并在120天内完成这一壮举,助力Grok系列模型研发。在告别信中,他回顾了与马斯克共同创立xAI的历程,以及团队夜以继日攻克技术难关的奋斗经历。离职后,他将创办风险投资公司Babuschkin Ventures,专注AI安全研究和前沿技术投资。随着Igor的离开,xAI创始12人团队已减至9人。文末还附带了AI大模型学习资源包的推广

2025-08-14 16:00:49 630

原创 AI赋能运维:大模型+智能体如何提高运维效率,降低运维成本?

摘要:本文介绍了一套基于AI大模型的智能告警处置系统,通过"规则引擎+知识库+大模型+智能体"四位一体框架,实现了告警处理的智能化升级。系统采用分层处理机制:首先进行智能降噪与分流,然后通过规则引擎解决已知问题,对复杂告警则启用三层AI分析体系(规则匹配、语义理解、智能体诊断)。该系统可将80%常见告警自动化处理,同时通过持续学习机制不断优化知识库。文章还提供了AI大模型学习资源包,包含从入门到进阶的全套教程,帮助开发者掌握智能运维核心技术。

2025-08-14 14:01:48 756

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除