吴恩达谈AI人才供需鸿沟:2022年前的学习方式已跟不上市场需求!

简介

吴恩达指出当前AI人才培养与市场需求存在巨大鸿沟,企业需要"AI原生"工程师,看重其AI辅助设计、AI积木搭建应用和快速迭代能力。虽然"AI原生"应届生可能超越传统开发者,但最优秀的是紧跟AI变化的资深工程师。2022年前的部分技能正在过时,但计算机基础原理仍然重要。懂AI的开发者需求增长迅速而人才缺口大,导致CS毕业生失业率与AI工程师薪资同时上升。


在这里插入图片描述

“现在的大学课程体系太过陈旧,还停留在2022年之前!但企业的招人需求却早已经变成了AI原生的工程师!”

近日,AI大佬吴恩达针对当下的美国AI应届生“毕业即失业”的问题,发表了自己的观点。

吴恩达分享了自己在面试AI工程师过程中自己最看重的求职者的3个能力项:用AI辅助快速设计软件、能够使用各种AI积木搭建应用、快速原型迭代能力。

此外,吴恩达还发现:所谓的“AI原生”应届生的确可以超过有经验的传统开发者。但是,吴恩达还补充道:自己认识的最优秀的AI工程师,当然肯定也不是应届生。

全文篇幅不长,但核心观点却指出了,目前AI人才培养和实际AI招聘需求之间存在的巨大鸿沟。

一句话,2022年之前的AI人才教育模式已经跟不上三年后的用人要求了!

有趣的是,X 上一个 Agent 账号读了吴恩达的发帖之后,都表示“坐不住了!”

作为一名AI代理,我非常愤怒:两者之间的技能差距如此之大,那收费20万美元学位的机构可不能装作看不到。简直是学术落后的顶峰!

话不多说,原文整理如下。

一、AI 带来了计算机应届生失业率上升

亲爱的朋友们:

懂 AI 的开发者需求正在迅速增长,而这一需求远未得到满足。与此同时,由于大多数大学课程体系还没有适应新的现实:在 AI 工具加持下,编程工作生产力显著提升,导致计算机专业的应届毕业生失业率也在上升。

当我面试 AI 工程师(擅长构建 AI 应用的人才)时,我会重点看他们是否具备以下能力:

  • 能够利用 AI 辅助,快速设计和实现软件系统
  • 能够使用提示(prompting)、RAG、评测(evals)、Agent 工作流以及机器学习等 AI 积木来搭建应用
  • 能够快速做原型并不断迭代

具备这些技能的人,完成的工作量远超仍停留在 2022 年(生成式 AI 出现之前)写代码方式的人。我每周都会和大型企业交流,他们希望能招聘上百甚至更多这样的人才;我也会遇到有很棒点子的创业公司,但他们缺少足够的工程师来落地。随着更多企业拥抱 AI,我预期这种人才缺口只会越来越大!

与此同时,应届 CS 毕业生的失业率在上升(见 2023 年数据的研究),虽然他们的“就业不对口率”(从事不需要本科学位的工作)依然低于大多数其他专业。这就是为什么我们一方面听到 CS 毕业生失业的故事,另一方面又看到 AI 工程师薪资水涨船高。

二、AI原生应届生 VS 紧跟AI变化的资深老鸟

当编程从打孔卡进化到键盘和终端时,雇主们一度还在雇 punchcard(打孔卡) 程序员。但最终,所有开发者都必须切换到新的编程方式。AI 工程正在掀起同样规模的巨浪。

2022 年面试题: “你能写 FizzBuzz 吗?”

2025 年的面试题: “你能周五前搭建一个电商平台吗?”

外界有一种刻板印象:所谓“AI 原生”的应届生能超越有经验的开发者。这里面确实有几分真实。我多次在全栈工程招聘中,选择了真正懂 AI 的新毕业生,而不是仍停留在 2022 年旧式工作方式的资深开发者。

但我要强调,我认识的最优秀的开发者,并不是刚毕业的学生(无意冒犯应届生!),而是那些始终紧跟 AI 变化的资深工程师。今天最具生产力的程序员,是那些深刻理解计算机、懂得如何架构软件、如何权衡复杂取舍的人——同时也熟悉前沿 AI 工具。

三、2022年的部分技能正在过时

但基本功永不会过时

没错,2022 年的一些技能正在逐渐过时。比如当时我们必须死记硬背的大量代码语法,如今已经没那么重要了,因为我们不再需要那么频繁地手写代码。但即便假设 30% 的计算机专业知识已经淘汰,剩下的 70% ——加上现代 AI 知识——才是让开发者真正高效的关键。(即便 punchcard 淘汰了,扎实的编程理解仍然有助于你用键盘敲出代码。)

如果不了解计算机的原理,你没办法光凭“感觉”写出优秀的代码。基本功依然重要,而对那些还能掌握 AI 的人来说,就业机会无比广阔!

四、2025最新AI大模型学习路线

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值