Tensorflow笔记(一):常用函数、张量操作、神经网络模型实现(鸢尾花分类)

import pandas as pd
import tensorflow as tf
import numpy as np


# ----------------------------- tensor张量 -----------------------------------
# 创建张量
a = tf.constant([1, 5], dtype=tf.int64)
print(a)
# > tf.Tensor([1 5], shape=(2,), dtype=int64)
# 结果说明:shape中逗号的个数其实就是张量的维数,即:一个逗号就是一维张量,两个逗号就是二维张量
print(f"a:{a}, a.shape:{a.shape}, a.dtype:{a.dtype}")
a = np.arange(0, 5)
b = tf.convert_to_tensor(a, dtype=tf.int64)  # 将numpy数组转为张量
print(b)

# 特定张量生成
a = tf.zeros(10)  # 创建全为0的一维张量, 元素个数为10
b = tf.ones(10)  # 创建全为1的一维张量
c = tf.fill([2, 3], 1)  # 创建全为1的二维张量,元素个数分别为2,3

# 随机张量生成
a2 = tf.random.truncated_normal([2, 2], mean=0.5, stddev=1)  # 正态分布随机数
print(a2)
b2 = tf.random.uniform([2, 3], minval=0, maxval=1)  # 均匀分布随机数
print(b2)

# ----------------------------- tensorflow常用函数 -----------------------------------
# 注意:做四则运算时需要保证数据类型一致
a1 = tf.cast(a, dtype=tf.float64)  # 张量数据类型强制转换为float64
a_min = tf.reduce_min(a)  # 计算张量所有元素的最小值
a_mean = tf.reduce_mean(a)  #
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Trisyp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值