import pandas as pd
import tensorflow as tf
import numpy as np
# ----------------------------- tensor张量 -----------------------------------
# 创建张量
a = tf.constant([1, 5], dtype=tf.int64)
print(a)
# > tf.Tensor([1 5], shape=(2,), dtype=int64)
# 结果说明:shape中逗号的个数其实就是张量的维数,即:一个逗号就是一维张量,两个逗号就是二维张量
print(f"a:{a}, a.shape:{a.shape}, a.dtype:{a.dtype}")
a = np.arange(0, 5)
b = tf.convert_to_tensor(a, dtype=tf.int64) # 将numpy数组转为张量
print(b)
# 特定张量生成
a = tf.zeros(10) # 创建全为0的一维张量, 元素个数为10
b = tf.ones(10) # 创建全为1的一维张量
c = tf.fill([2, 3], 1) # 创建全为1的二维张量,元素个数分别为2,3
# 随机张量生成
a2 = tf.random.truncated_normal([2, 2], mean=0.5, stddev=1) # 正态分布随机数
print(a2)
b2 = tf.random.uniform([2, 3], minval=0, maxval=1) # 均匀分布随机数
print(b2)
# ----------------------------- tensorflow常用函数 -----------------------------------
# 注意:做四则运算时需要保证数据类型一致
a1 = tf.cast(a, dtype=tf.float64) # 张量数据类型强制转换为float64
a_min = tf.reduce_min(a) # 计算张量所有元素的最小值
a_mean = tf.reduce_mean(a) #
Tensorflow笔记(一):常用函数、张量操作、神经网络模型实现(鸢尾花分类)
于 2024-03-14 11:01:47 首次发布