扫描线详解

本文介绍了如何使用一维扫描线技巧来高效地维护平面上矩形的变化,通过树状结构实现MaxMaxMax查询。通过类比一维差分,拆分矩形并按行排序,自上而下更新区间,解决了多矩形覆盖点的问题。关键在于保证有序操作和双关键字排序处理重叠情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

扫描线

以一道题引入:平面上有nnn个矩形,有很多位置被多个矩形覆盖,其中有被最多矩形覆盖的点,问覆盖这个点的矩形个数。

考虑把矩形中的每个点都加1,于是就是查询MaxMaxMax

既然是维护平面上矩形的更改与MaxMaxMax,容易想到树套树,但是空间不行。所以希望要有一个一维的数据结构。

既然是一维的东西,怎么能维护平面呢?

类比一下小巧的一维差分:用一个变量(零维),从左到右走过去,每次累加,在位置iii,这个变量存下的是1至iii的前缀和(一维)。

这样一来,可以用线段树,从上到下加下来。

一个矩形把它拆成顶和底,顶的操作,是在左侧到右侧的区间内加1,底的操作,是在左侧到右侧的区间内-1。(注意,类似于一维差分,这里底的横坐标要+1)

一个拆分如下:

在这里插入图片描述

接下来考虑有多个矩形。

在做一维差分时,我们可以直接在数组上+1和-1,可是这里我们不能。

那么一维差分的原理是什么?

是在做到iii时,1至i−1i-1i1都已经处理完,也就是讲究一个有序性。

为了保证有序的差分操作,按照拆完后的行(x,yx,yx,y)排序,然后自上到下一个个做,每次做完后查询MaxMaxMax即可。

需要注意的是,当多个行相同时,先减再加(双关键字排序),是因为减是针对矩形底的。

因为这个线段树是一维的,像一条线从上往下扫过去,于是得名“扫描线”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值