2025年,多模态特征融合将迎来第二轮爆发!

关注gongzhonghao【学术鲸】,解锁更多SCI相关资讯!

推荐一个高潜力、高回报的研究方向:多模态特征融合

从近期CVPR/ICCV/ACMMM的录用统计来看,这方向依旧是2025的发文顶流,尤其在贴纸情感、3D检测、语义占用等细分赛道持续霸榜。现在顶会青睐“瞄准真痛点、给出新解法”的实战型工作,而多模态特征融合既能补足单模态的信息缺口,又能通过协同增强让模型在精度、鲁棒性和场景泛化上全面升维;其通用性也决定了它可在医疗诊断、自动驾驶、教育评测、娱乐创作等多元场景中即插即用。

因此,无论你想冲best paper还是做落地创业,这方向都具备高创新天花板与广阔落地前景。建议同学们紧跟Mamba、Diffusion Transformer等新架构把多粒度层级融合、跨模态知识蒸馏、语义-深度双引导等思路嫁接到具体场景,实现“模型+应用”双赢小图现特为大家精选近年来有关多模态特征融合的论文!

MGHFT:Multi-Granularity Hierarchical Fusion Transformer for Cross-Modal Sticker Emotion Recognition

方法:

首先用LLaVA-NeXT为多视角提示生成四条文本描述,再用BERT编码为语义向量;随后以PVT为视觉骨干,在每阶段用Soft-Fusion将对应视角文本与视觉局部特征加权融合,并用对比损失+多级交叉熵约束全局特征对齐;最后通过TGFA模块把全部视觉与文本特征做两次交叉注意力+残差+MLP精炼,接FC分类头完成情绪预测。

图片

创新点:

  • 设计MLLM驱动的多视角贴纸解释器,自动从意图、风格、主体、细节四视角生成文本描述,把人类理解贴纸的隐性知识注入模型。

  • 提出多粒度层级融合策略,在Pyramid Vision Transformer的每级阶段分别对齐并注入全局/局部文本语义,实现由粗到细的跨模态对齐。

  • 构建文本引导融合注意力TGFA,以文本为查询、视觉为键值再做二次交叉注意力,最终把多级跨模态表征整合为情绪感知特征。

图片

论文链接:

https://arxiv.org/pdf/2507.18929

关注gongzhonghao【学术鲸】,获取多模态最新选题和idea~

Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes

方法:

首先并行运行三条流——LiDAR-PillarNet把点云转成2D伪图像提取几何,LiDAR-Height Compression用3D稀疏卷积+高度压缩得到BEV特征,3D MM流将图像生成的伪点云与原始点云合并后经UV-Polar块输出纹理-方位融合特征;随后将三路特征在2D空间拼接,再经2D CNN精炼成统一表征,最后送入RPN与检测头完成3D框回归与分类。

图片

创新点:

  • 提出三并行流架构MuStD,将PillarNet、高度压缩BEV与全新3D多模态流协同设计,首次系统整合激光几何与图像纹理。

  • 设计3D MM流中的UV-Polar块,用UV映射保持像素级纹理、用极坐标索引编码空间方位,实现多模态信息在同一稀疏卷积框架下的互补增强。

  • 引入轻量级融合策略,仅在最终特征级联后做一次2D CNN精炼,既保留细节又降低算力,使模型在50ms内完成推理并夺得多项第一。

图片

论文链接:

https://arxiv.org/pdf/2507.19304

关注gongzhonghao【学术鲸】,获取多模态最新选题和idea~

SDGOCC:Semantic and Depth-Guided Bird’s-Eye View Transformation for 3D Multimodal Occupancy Prediction

方法:

首先利用ResNet-50提取多视角图像特征,并并行输出像素级语义与深度分布;接着以激光点云生成的稀疏深度图和语义掩码为引导,通过扩散-离散化策略生成高质量虚拟点完成2D→3D视图变换;随后将激光BEV特征与图像BEV特征在动态邻域注意力和门控机制下融合,并依据激光占用的活跃/非活跃区域对图像特征进行加权蒸馏;最后经残差BEV编码与通道-高度变换得到3D体素占用结果,整体仅用轻量backbone即可在单张RTX-4090上实时运行。

图片

创新点:

  • 提出语义与深度联合引导的SDG视图变换,用激光稀疏深度做先验,通过局部扩散与双线性离散化在同类语义区域内精确播种虚拟点,显著提升深度估计并减少冗余计算。

  • 设计融合到占用的主动蒸馏模块FOAD,以激光可信区域为掩码,将多模态融合特征单向蒸馏回图像分支,既保留跨模态互补性又实现轻量化推理。

  • 构建双版本模型SDG-Fusion追求极致精度,SDG-KL在蒸馏后仅以图像流推理,兼顾50+FPS实时需求,实现精度-速度灵活权衡。

图片

论文链接:

https://arxiv.org/pdf/2507.17083

► 论文发表难题,一站式解决!

TURING

选题是论文的第一步,非常重要!

但很多学生找到了热门的选题,却卡在代码和写作上!可见论文要录用,选题-idea-代码-写作都缺一不可!

图灵学术论文辅导,汇聚经验丰富的实战派导师团队,针对计算机各类领域提供1v1专业指导,直至论文录用

关注gongzhonghao【学术鲸】,解锁更多SCI相关资讯!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值