文章目录
前言
1.实现存在尺度差异的模板匹配算法;
2.实现基于 SIFT 特征匹配的目标定位检测算法;
3.使用Python对手机摄像头进行标定;
4.用 RANSAC 估计基础矩阵,并剔除错误匹配;
5.用 OpenCV 实现视频中的行人检测算法;
首选简单介绍相关算法的原理,并通过Python来实现主要功能。
摘要
在本次报告中主要是要是对计算机视觉中的图形图像技术进行实践,主要采用 Python 语言编写相关算法,借助 Python 丰富的第三方库可以高效的实现相关算法。报告中主要对 normalized cross correlation 算法、SIFT 算法、RANSAC 算法以及相机标定和视频行人检测的技术进行实践,包括算法原理,以及涉及的数据处理方法进行介绍。包括多尺度差异图像下 normalized cross correlation 算法的匹配结果分析;SIFT 算法中的特征提取以及目标检测等技术分析;RANSAC 算法中估算基础矩阵 F 及剔除 SIFT 算法的错误匹配以及相机标定和视频行人检测的技术和方法进行介绍。
一、模板匹配算法
1.1 算法原理简介
1.1.1 NCC(normalized cross correlation)算法
NCC(norm