AiCube图形化自动生成程序,驱动 ST7735S,TFT-彩屏,@Ai8051U

AiCube 图形化自动生成程序,TFT-彩屏, @Ai8051U

Part.1 160*80分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 0.96寸TFT

  • ST7735S

Part.2  160*160分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 0.71寸TFT

  • GC9D01

Part.3 240*135分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 1.14寸

  • ST7789

Part.4 240*240分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 1.28圆形TFT

  • GC9A01

Part.5  280*240分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 1.69寸TFT

  • ST7789V

Part.6 284*76分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 2.25寸TFT

  • ST7789

Part.7 320*170分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 1.9寸TFT

  • ST7789

Part.8 320*172分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 1.47寸TFT

  • ST7789

Part.9 320*240分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 2.8寸TFT

  • ST7365

Part.10  480*320分辨率

Ai8051U DMA刷SPI-TFT彩屏

  • 40MHz@3.3V

  • USARTx-SPI 四分频

  • SPI 二分频

  • 3.5寸TFT

  • ST7365

刷屏时间统计

### Aicube目标检测使用指南与实现方法 Aicube是由嘉楠科技提供的一个AI模型部署工具,专为嵌入式设备和边缘计算场景设计。它支持YOLO等主流的目标检测算法,并且能够在K230等硬件平台上高效运行[^1]。以下是关于如何在Aicube中实现目标检测的详细指南。 #### 数据集准备 为了确保Aicube能够正确处理数据集,需要遵循以下规范: - **标签文件(labels.txt)**:标签文件中应包含所有类别的名称,每行一个类别。类别名称可以是数字或英文字符,但不能包含中文字符。如果确实需要使用中文标签,必须在代码层面进行修改以支持中文显示。 示例: ``` person car bicycle dog ``` - **图像与标注文件**:图像文件通常为`.jpg`或`.png`格式,而标注文件则为`.txt`格式,其中每一行对应一个检测对象,包含类别ID、边界框坐标(归一化后的x_center, y_center, width, height)。 #### 模型训练 虽然Aicube主要用于模型部署,但通常目标检测模型的训练会在主机上完成。推荐使用YOLOv5或YOLOv8作为基础模型,这些模型已经在GitHub上开源,并提供了详细的训练教程。训练完成后,将生成的权重文件转换为Aicube支持的格式(如ONNX),以便后续部署。 #### 模型转换与优化 在模型训练结束后,需要将模型转换为Aicube兼容的格式。常见的做法是将PyTorch模型导出为ONNX格式,然后通过Aicube提供的工具进一步优化和量化,以适应嵌入式平台的性能限制。具体步骤如下: 1. **导出ONNX模型**: ```python import torch # 加载预训练模型 model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # 导出为ONNX格式 dummy_input = torch.randn(1, 3, 640, 640) torch.onnx.export(model, dummy_input, "yolov5s.onnx", export_params=True, opset_version=12, do_constant_folding=True, input_names=['input'], output_names=['output'], dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}) ``` 2. **使用Aicube进行模型优化**:根据官方文档,利用Aicube内置工具对ONNX模型进行量化和优化,生成适用于K230等硬件的模型文件。 #### 部署与推理 部署阶段主要涉及将优化后的模型加载到目标设备并执行推理。Aicube提供了Python API用于简化这一过程。以下是一个简单的推理示例: ```python from aicube import ModelRunner # 初始化ModelRunner runner = ModelRunner(model_path="optimized_yolov5s.bin") # 加载输入图像 image = cv2.imread("test.jpg") input_data = preprocess(image) # 实现图像预处理函数 # 执行推理 output = runner.run(input_data) # 解析输出结果 boxes, scores, classes = postprocess(output) # 实现后处理函数 ``` #### 注意事项 - 在使用Aicube时,务必确保数据集符合规范要求,尤其是标签文件的内容,避免出现不必要的错误。 - 如果遇到“数据集不合规范”的报错,首先检查`labels.txt`中的标签是否包含非法字符(如中文),并确保每个标签占据一行。 - 对于多标签分类任务,需确保模型输出层与标签数量一致,并调整损失函数以适应多类别场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值