贝尔曼-福特算法
原理假设有N个顶点,对图做N-1次松弛操作。
松弛操作:
有两个点A B都可以从源点经由某条路出发,假设到A的距离为M,到B的距离为N。A B之间的距离是L,如果从A到B 的距离M+L>N那么到B的距离就缩短l,也就是说找到了一条更短的路。这就是松弛。
含有N个顶点的图,某两个顶点之间的最短距离深度不会超过N-1.
步骤:
- 首先从开始到开始之后的任意一点
- 接着遍历路径表中的相邻的两点之间的全部路径一次。
- 直到找到最短路径
但是当遍历次数超过N-1之后还在减少。所以具有负权环,不适用于这个算法
没有负权值也可以使用,但是效率比狄克拉斯特算法低
具体实现和狄克拉斯特算法相差无几,但是这个算法要求全部遍历这是最大的区别。狄克拉斯特算法在上一篇内容:狄克拉斯特算法