算法图解

贝尔曼-福特算法
原理假设有N个顶点,对图做N-1次松弛操作。
松弛操作:
有两个点A B都可以从源点经由某条路出发,假设到A的距离为M,到B的距离为N。A B之间的距离是L,如果从A到B 的距离M+L>N那么到B的距离就缩短l,也就是说找到了一条更短的路。这就是松弛。
含有N个顶点的图,某两个顶点之间的最短距离深度不会超过N-1.
步骤:

  1. 首先从开始到开始之后的任意一点
  2. 接着遍历路径表中的相邻的两点之间的全部路径一次。
  3. 直到找到最短路径
    但是当遍历次数超过N-1之后还在减少。所以具有负权环,不适用于这个算法
    没有负权值也可以使用,但是效率比狄克拉斯特算法低
    具体实现和狄克拉斯特算法相差无几,但是这个算法要求全部遍历这是最大的区别。狄克拉斯特算法在上一篇内容:狄克拉斯特算法
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值