HDU 5606 tree(并查集)

本文介绍了一种基于树结构的并查集算法实现方法,用于解决特定类型的图论问题。该算法通过处理一系列带有权重0或1的边来确定每个节点到其最近节点的距离,并最终输出所有节点距离最近节点距离的异或和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
有一个树(n个点, n-1条边的联通图),点标号从1~n,树的边权是0或1.求离每个点最近的点个数(包括自己)
Input
第一行一个数字T,表示T组数据.
对于每组数据,第一行是一个n,表示点个数,接下来n-1行,每行三个整数u,v,w表示一条边连接的两个点和边权.
T=50,1≤n≤100000,0≤w≤1.
Output
对于每组数据,输出答案,考虑到输出规模过大,设ans​i表示第i个点的答案.你只需输出ansi的异或和即可
Sample Input
1
3
1 2 0
2 3 1
Sample Output
1
Solution
并查集,初始时每个点表示一个集合,如果两个点之间边权为0则将这两个点所在集合合并,最后得到的就是若干个内部点间距离为0的集合,统计每个集合内点的数量num[i],那么第i个集合中所有点的答案就都是cnt[i],由于只输出答案的异或和,所以只对有奇数个点的集合统计答案即可,时间复杂度O(n)
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 111111
int T,n,ans,fa[maxn],num[maxn];
void init(int n)
{
    for(int i=1;i<=n;i++)
        fa[i]=i,num[i]=1;
}
int find(int x)
{
    if(fa[x]==x)return x;
    return fa[x]=find(fa[x]);
}
void unit(int x,int y)
{
    x=find(x),y=find(y);
    if(x==y)return ;
    fa[y]=x;
    num[x]+=num[y];
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        init(n);
        for(int i=1;i<n;i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            if(!w)unit(u,v);
        }
        ans=0;
        for(int i=1;i<=n;i++)
            if(fa[i]==i&&(num[i]&1))
                ans^=num[i];
        printf("%d\n",ans);
    }
    return 0;
}
### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值