comfyui适用Flux.1模型的controlnet方案整理--Xlabs-Ai系列/Union-alpha集成/Mistoai线稿

    Flux官方模型发布后,开源社区很快就训练出了flux生态下的controlne,本节内容我们就开源社区发布的几种不同的controlnet模型及应用进行尝试。

1 Xlabs-Ai系列controlnet

    XLabs-AI共发布三款controlnet模型,分别为 canny(硬边缘)、depth(深度) 和 hed(软边缘) ,目前均已经更新至V3版本。

1.1 模型下载

canny V3版模型下载链接:

https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/tree/main

depth V3版模型下载链接:

https://huggingface.co/XLabs-AI/flux-controlnet-depth-v3/tree/main

hed V3版模型下载链接:

https://huggingface.co/XLabs-AI/flux-controlnet-hed-v3/tree/main

模型放置位置..\ComfyUI\models\xlabs\controlnets

(如没有对应文件夹,新建即可)

图片

1.2 插件安装

    使用xlabs-ai的controlnet,需要使用对应的插件与对应的工作流程。

    插件地址:https://github.com/XLabs-AI/x-flux-comfyui

    插件也可以通过管理器搜索“x-flux-comfyui”进行安装。

图片

1.3 示例工作流

    插件安装完成后,可以在..\ComfyUI\custom_nodes\x-flux-comfyui\workflows中看到示例工作流。

    Flux模型的controlnet工作流逻辑与1.5/xl系列模型的逻辑相同,特殊点是需要使用Flux模型专用的“Flux应用controlnet”节点,不同的controlnet使用不同的预处理器。另外,采样器需要使用专用的“XLabs采样器”。

    注意:Xlabs-ai的controlnet仅支持dev版本的flux模型。

    我们重新整理示例工作流,如下:

canny:

图片

depth:

图片

hed:

图片

    如果是新建工作流,xlabs相关节点的添加路径

图片

2 Union-alpha集成controlnet

    我们在使用XL大模型的controlnet时,多合一的controlnet-union-sdxl-1.0一个模型同时具备多项controlnet功能,使用时不用再选择模型,十分便捷。Flux模型目前也有类似的controlnet,这就是InstantX团队发布的FLUX.1-dev-Controlnet-Union模型,一个模型可以适配canny、depth、Pose、Tile等多个控制条件。

图片

2.1 模型下载

官方模型地址:https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union/tree/main

fp8版本地址:https://www.liblib.art/modelinfo/f6776f04e5024f389b7b0a41c73ac65f?from=search&versionUuid=3e284a4f94784a2bb0f28bf6d4d912f6

模型放置位置/comfyui/models/controlnet

图片

2.2 插件安装

    union的controlnet模型在刚发布时还需要安装ComfyUI-eesahesNodes插件才可以使用,不过随着comfyui的更新发展,新版本的comfyui原生节点已支持使用union-controlnet模型,官方页面也宣布弃用原eesahesNodes节点,并给出新的工作流示例。

原插件地址如下,不过作者已注明节点已弃用,可以无需再进行安装:

https://github.com/EeroHeikkinen/ComfyUI-eesahesNodes

原作者给出的新的工作流示例地址:

https://civitai.com/models/709352

2.3 示例工作流

    作者给出的示例工作流比较杂乱,我们重新整理分区,可以获得工作流如下:

图片

    该工作流中,“加载图像”节点将图像信息直接传入给“controlnet应用”,虽然未经预处理器处理,但是除了openpose以外实测也能获得控制效果,而openpose则必须传入预处理后的姿态图才能生效。

图片

    “controlnet应用”节点中的“强度”参数推荐范围是0.5~0.8。

    正常使用时,我们可以在“加载图像”节点后增加controlnet的预处理器,获取预处理后的图像再传入“controlnet应用”节点。这样的组合和1.5及XL模型的工作流类同。

    我们使用comfy-Org的fp8模型,获取更加精简的工作流如下:

图片

3 MistoControlNet-Flux-dev

    MistoControlNet是Mistoai开发的专门用于线稿或轮廓控制的controlnet模型,它在线条控制方面有着优于其他模型的能力。

3.1 模型下载

模型名称为mistoline_flux.dev_v1.safetensors

TheMistoAI/MistoLine_Flux.dev at main

图片

 模型放置目录ComfyUI\models\TheMisto_model\ 

图片

(需要自行新建该文件夹,或首次运行对应插件时会自动新建该文件夹)

3.2 插件安装

    目前MistoControlNet-Flux-dev还没有入库,无法通过comfyui管理器安装。

    项目地址:GitHub - TheMistoAI/MistoControlNet-Flux-dev: ControlNet collections for Flux1-dev model, Trained by TheMisto.ai Team

    不过根据测试,通过启动器的url方式安装显示错误,通过git的方式也无法安装成功。最终仅可以使用手动下载的方式进行安装。

图片

    在MistoControlNet-Flux-dev主页,按上述方式手动下载插件模型并进行解压缩。

    解压缩文件复制到..\ComfyUI\custom_nodes目录下,注意解压缩文件含重名子文件夹,需删除,安装完成参考下图所示。

图片

3.3 示例工作流

 ../Comfyui/custom_nodes/MistoControlNet-Flux-dev/workflows文件夹下有官方提供的示例工作流

图片

    将示例工作流拖入comfyui工作界面,并对工作流重新整理排版如下:

图片

注意事项:

官方主页提供了中文说明,针对注意事项有相关提示,摘抄如下:

图片

图片

图片

图片

本节内容中的模型已上传至网盘,网盘链接如下:

https://pan.quark.cn/s/644de81a4f21

     模型文件已进行整理,网盘内包含工作流获取方式,适合不方便科学上网的的小伙伴下载使用。模型文件数量较多且尺寸较大,为避免下载中断等问题,可先转存再下载。

     欢迎正在学习comfyui等ai技术的伙伴V加 huaqs123 进入学习小组。在这里大家共同学习comfyui的基础知识、最新模型与工作流、行业前沿信息等,也可以讨论comfyui商业落地的思路与方向。 欢迎感兴趣的小伙伴,群共享资料会分享博主自用的comfyui整合包(已安装超全节点与必备模型)、基础学习资料、高级工作流等资源……

    致敬每一位在路上的学习者,你我共勉!Ai技术发展迅速,学习comfyUI是紧跟时代的第一步,促进商业落地并创造价值才是学习的实际目标。

 

——画青山Ai学习专栏———————————————————————————————

零基础学Webui:

https://blog.csdn.net/vip_zgx888/category_13020854.html

Comfyui基础学习与实操:

https://blog.csdn.net/vip_zgx888/category_13006170.html

comfyui功能精进与探索:

https://blog.csdn.net/vip_zgx888/category_13005478.html

系列专栏持续更新中,欢迎订阅关注,共同学习,共同进步!

### Flux 相关模型文件的中文含义 #### 1. **Flux canny safetensors 模型 中文解释** `Flux canny safetensors` 是一个基于 Flux 团队开发的 Canny 边缘检测模型,采用 `.safetensors` 格式保存。Canny 边缘检测是一种经典的图像处理技术,用于从输入图像中提取清晰的边缘信息[^2]。该模型通过深度学习改进了传统算法,能够生成更高质量的边缘图,适用于图像生成任务中的结构化控制。 - **Flux**:指代由 XLabs-AI 开发的一系列模型集合。 - **canny**:表示该模型专注于 Canny 边缘检测任务。 - **safetensors**:一种安全且高效的模型权重存储格式,相较于传统的 `.pt` 或 `.bin` 格式具有更高的安全性[^4]。 综合来看,`Flux canny safetensors` 表示这是一个基于 Flux 的 Canny 边缘检测模型,使用 `.safetensors` 格式保存的权重文件。 --- #### 2. **flux-canny-controlnet-v3 功能含义** `flux-canny-controlnet-v3` 是 Flux 团队开发的第三代 Canny 边缘检测控制网络模型ControlNet 是 Stable Diffusion 生态系统中的一个重要组件,用于通过结构化输入(如边缘图)指导图像生成过程[^3]。 - **flux**:指代 Flux 团队开发的模型集合。 - **canny**:表示该模型专注于 Canny 边缘检测任务。 - **controlnet**:作为 Stable Diffusion 的一部分,用于引入结构化控制,以指导生成图像的过程。 - **v3**:表示这是该模型的第三个版本,通常意味着在前两个版本的基础上进行了改进或优化。 `flux-canny-controlnet-v3` 提供了更真实的效果,并增加了对 ComfyUI 的支持[^2]。它能够生成高质量的边缘图,从而提升图像生成的质量和细节。 --- #### 3. **flux-depth-controlnet 功能含义** `flux-depth-controlnet` 是一个与深度图生成相关的控制网络模型。深度图用于增加图像的立体感,是图像生成任务中常用的结构化输入之一[^4]。 - **flux**:指代 Flux 团队开发的模型集合。 - **depth**:表示该模型专注于生成深度图。 - **controlnet**:作为 Stable Diffusion 的一部分,用于通过深度图指导图像生成过程。 `flux-depth-controlnet` 能够生成高质量的深度图,从而帮助生成更具立体感的图像。 --- #### 4. **flux-depth-controlnet-v3 功能含义** `flux-depth-controlnet-v3` 是 Flux 团队开发的第三代深度图生成控制网络模型。与之前的版本相比,v3 版本提供了更真实的效果,并增加了对 ComfyUI 的支持[^2]。 - **flux**:指代 Flux 团队开发的模型集合。 - **depth**:表示该模型专注于生成深度图。 - **controlnet**:作为 Stable Diffusion 的一部分,用于通过深度图指导图像生成过程。 - **v3**:表示这是该模型的第三个版本,通常意味着在前两个版本的基础上进行了改进或优化。 `flux-depth-controlnet-v3` 能够生成更高质量的深度图,从而显著提升图像生成的立体感和真实感。 --- #### 5. **flux-hed-controlnet-v3 功能含义** `flux-hed-controlnet-v3` 是 Flux 团队开发的第三代 HED 边缘检测控制网络模型。HED(Holistically-Nested Edge Detection)是一种全嵌套边缘检测算法,能够生成更精细的图像分割结果[^5]。 - **flux**:指代 Flux 团队开发的模型集合。 - **hed**:表示该模型专注于 HED 边缘检测任务。 - **controlnet**:作为 Stable Diffusion 的一部分,用于通过 HED 边缘检测结果指导图像生成过程。 - **v3**:表示这是该模型的第三个版本,通常意味着在前两个版本的基础上进行了改进或优化。 `flux-hed-controlnet-v3` 能够生成高质量的边缘图,从而帮助生成更精细的图像细节。 --- ### 示例代码:加载 `.safetensors` 文件 以下是一个使用 Python 和 `safetensors` 库加载模型权重的示例: ```python from safetensors import safe_open import torch # 打开 safetensors 文件 with safe_open("flux-canny-controlnet-v3.safetensors", framework="pt", device="cpu") as f: for key in f.keys(): tensor = f.get_tensor(key) # 获取张量 print(f"Key: {key}, Tensor Shape: {tensor.shape}") ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值