RKNN-Toolkit2 转换脚本

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
RKNN 转换脚本(示例)

功能概述:
    1. 初始化 RKNN 对象并开启日志记录。
    2. 根据目标硬件与量化需求配置转换参数。
    3. 加载 PyTorch 模型文件及其输入尺寸信息。
    4. 在指定的量化数据集上构建 RKNN 并完成量化(可选)。
    5. 将最终模型导出为 *.rknn 文件。
    6. 释放 SDK 资源。

使用方式:
    - 替换 `MODEL_PATH`、`INPUT_SIZES` 与 `DATASET_TXT` 为你自己的文件路径。
    - 根据目标芯片修改 `TARGET_PLATFORM` 与量化相关字段。
    - 运行脚本即可得到 `output_rknn_path` 指定的 RKNN 文件。

注意:
    • 本脚本仅支持 PyTorch 模型;若使用 TensorFlow / ONNX,请将
      load_pytorch 替换为相应的 load_* 接口。
    • 为保证量化精度,建议 `DATASET_TXT` 至少包含 200–300 张代表性图片。
"""

import os
import sys
from pathlib import Path

# ────────────────────── 常量区 ────────────────────── #
MODEL_PATH          = "./resnet18.pt"     # PyTorch 模型文件
INPUT_SIZES         = [[1, 3, 224, 224]]   # 输入尺寸列表(batch, ch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值