SEAttention 通道注意力机制

这篇博客介绍了如何在PyTorch中实现Squeeze-and-Excitation(SE)注意力机制,通过SEAttention类详细步骤,并展示了在512通道特征上的应用实例。它源自CVPR2018的论文,用于提升深度卷积网络的特征表达能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

基于通道的注意力机制 源自于 CVPR2018: Squeeze-and-Excitation Networks

官方代码:https://github.com/hujie-frank/SENet



在这里插入图片描述

import numpy as np
import torch
from torch import nn
from torch.nn import init


class SEAttention(nn.Module):
    def __init__(self, channel=512,reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.se = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),
                                nn.ReLU(inplace=True),
                                nn.Linear(channel // reduction, channel, bias=False),
                                nn.Sigmoid()    )

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.se(y).view(b, c, 1, 1)
        return x * y.expand_as(x)



if __name__ == '__main__':
    feature = torch.randn(50,512,7,7)
    se      = SEAttention(channel=512,reduction=8)
    output  = se(feature)
    print(output.shape)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ViatorSun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值