PyTorch学习系列(十)——如何在训练时固定一些层?

本文介绍了在PyTorch中如何在训练过程中保持某些层不变,特别是预训练网络的卷积层。通过设置Variable的`requires_grad=False`或使用`volatile=True`,可以阻止这些层在反向传播时计算梯度,从而只更新顶层的全连接层。`volatile=True`主要适用于推理阶段,减少内存消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有时我们会用其他任务(如分类)预训练好网络,然后固定卷积层作为图像特征提取器,然后用当前任务的数据只训练全连接层。那么PyTorch如何在训练时固定底层只更新上层呢?这意味着我们希望反向传播计算梯度时,我们只希望计算到最上面的卷积层,对于卷积层,我们并不希望计算梯度并用梯度来更新参数。
我们知道,网络中的所有操作对象都是Variable对象,而Variable有两个参数可以用于这个目的:requires_grad和volatile。

requires_grad=False

在用户手动定义Variable时,参数requires_grad默认值是False。而在Module中的层在定义时,相关Variable的requires_grad参数默认是True。
在计算图中,如果有一个输入的requires_grad是True,那么输出的requires_grad也是True。只有在所有输入的requires_grad都为False时,输出的requires_grad才为False。

>>>x = Variable(torch.randn(2, 3), requires_grad=True)
>>>y = Variabl
PyTorch中,要冻结某参数,即保持其权重在训练过程中不发生更新。这种操作通常在迁移学习固定特定的的场景下使用,以便保留已经学到的知识。 要冻结某参数,可以通过以下步骤实现: 1. 首先,加载模型并查看模型的结构。通过打印模型就可以看到每一的名称以及对应的索引。 2. 在训练之前,确定需要冻结的。可以通过模型的参数名称或索引来定位到具体的。 3. 使用`requires_grad_()`函数来冻结参数,将需要冻结的的`requires_grad`属性设置为False。这样,在反向传播过程中,这些参数的梯度就不会进行更新了。 4. 在训练过程中,只对其他未冻结的进行梯度更新。 下面是一个简单的示例代码,演示如何冻结某参数: ```python import torch import torch.nn as nn # 加载模型并创建优化器 model = torchvision.models.resnet18(pretrained=True) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 查看模型结构 print(model) # 冻结某参数 # 可以通过模型的named_parameters()函数获取每一的名称和参数 # 这里以冻结ResNet的第4个卷积参数为例 for name, param in model.named_parameters(): if 'layer4' in name: # 可根据具体需求来决定冻结哪些 param.requires_grad_(False) # 训练过程 for inputs, labels in dataloader: outputs = model(inputs) loss = loss_func(outputs, labels) optimizer.zero_grad() loss.backward() optimizer.step() ``` 通过以上步骤,我们可以实现冻结某参数的操作。这样,在训练过程中,被冻结的的参数将不会更新,从而保持其固定的权重。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值