学习 RAGFlow 的知识图谱功能,非常详细收藏我这一篇就够了!

昨天我们学习了 RAGFlow 的 RAPTOR 分块策略,今天我们将继续学习另一种高级配置 —— 提取知识图谱(use_graphrag)

图片

该特性自 v0.16.0 起引入,开启该配置后,RAGFlow 会在当前知识库的分块上构建知识图谱,构建步骤位于数据抽取和索引之间,如下所示:

图片

知识图谱在涉及嵌套逻辑的多跳问答中尤其有用,当你在对书籍或具有复杂实体和关系的作品进行问答时,知识图谱的表现优于传统的抽取方法。

请注意,构建知识图谱将消耗大量 token 和时间。

开启 GraphRAG 任务


GraphRAG 的逻辑位于任务执行器的 do_handle_task() 函数中:

async def do_handle_task(task):
  # ...  elif task.get("task_type", "") == "graphrag":
    # 绑定聊天模型    chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
    # 运行 GraphRAG 逻辑    graphrag_conf = task["kb_parser_config"].get("graphrag", {})    with_resolution = graphrag_conf.get("resolution", False)    with_community = graphrag_conf.get("community", False)    async with kg_limiter:      await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)    return      

这个函数我们之前已经详细学习过,但是跳过了 GraphRAG 相关的逻辑,今天我们就继续来看下这个 run_graphrag() 的实现细节:​​​​​​​

async def run_graphrag(row: dict, language, with_resolution: bool, with_community: bool, chat_model, embedding_model, callback):
  # 检索原始分块列表  chunks = []  for d in settings.retrievaler.chunk_list(...):    chunks.append(d["content_with_weight"])
  # 使用 LightKGExt 或 GeneralKGExt 生成子图  subgraph = await generate_subgraph(    LightKGExt if row["kb_parser_config"]["graphrag"]["method"] != "general" else GeneralKGExt,    ...    row["kb_parser_config"]["graphrag"]["entity_types"],    ...  )
  # 将子图合并到知识图谱中  subgraph_nodes = set(subgraph.nodes())  new_graph = await merge_subgraph(...)
  # 实体消歧  if with_resolution:    await resolve_entities(new_graph, subgraph_nodes, ...)
  # 社区报告  if with_community:    await extract_community(new_graph, ...)

整体的逻辑还是比较清晰的,首先通过 retrievaler.chunk_list() 检索出该文档原始的分块列表,然后基于配置的实体类型生成子图,然后将子图合并到知识图谱中,最后进行实体消歧和社区报告的生成。

和 RAPTOR 任务一样,开启知识图谱也需要先执行一次标准的分块策略,生成原始的分块列表,在完成第一个任务后,会再生成一个知识图谱类型的任务,执行上面的代码逻辑。

提取知识图谱涉及的配置参数如下:

  • 实体类型(entity_types) - 指定要提取的实体类型,默认类型包括:组织(organization)、人物(person)、事件(event)和类别(category),可根据具体的知识库内容添加或删除类型;

  • 方法(method) - 用于构建知识图谱的方法,RAGFlow 支持两种方法:

    • 通用(general):使用 GraphRAG 提供的提示词提取实体和关系。

    • 轻量(light):使用 LightRAG 提供的提示词来提取实体和关系。此选项消耗更少的 tokens、更少的内存和更少的计算资源。

  • 实体消歧(resolution) - 是否启用实体消歧。启用后,解析过程会将具有相同含义的实体合并在一起,从而使知识图谱更简洁、更准确。例如 “2025” 和 “2025 年” 或 “IT” 和 “信息技术”,“特朗普总统” 和 “唐纳德·特朗普” 等。

  • 社区报告生成(community) - 是否生成社区报告。在知识图谱中,社区是由关系连接的实体簇,可以让大模型为每个社区生成摘要,这被称为 社区报告

构建子图


构建子图的逻辑位于 generate_subgraph() 函数:​​​​​​​

async def generate_subgraph(...):
  # 检查 doc_id 是否已经构建过子图  contains = await does_graph_contains(tenant_id, kb_id, doc_id)  if contains:    return None
  # 创建提取器实例,提取实体和关系  ext = extractor(llm_bdl, language=language, entity_types=entity_types)  ents, rels = await ext(doc_id, chunks, callback)
  # 将实体和关系构建成 NetworkX 子图  subgraph = nx.Graph()  for ent in ents:    ent["source_id"] = [doc_id]    subgraph.add_node(ent["entity_name"], **ent)  for rel in rels:    rel["source_id"] = [doc_id]    subgraph.add_edge(      rel["src_id"],      rel["tgt_id"],      **rel,    )
  # 将子图序列化为 JSON 字符串,作为分块存到文档库中  subgraph.graph["source_id"] = [doc_id]  chunk = {    "content_with_weight": json.dumps(      nx.node_link_data(subgraph, edges="edges"), ensure_ascii=False    ),    "knowledge_graph_kwd": "subgraph",    "kb_id": kb_id,    "source_id": [doc_id],    "available_int": 0,    "removed_kwd": "N",  }  cid = chunk_id(chunk)
  # 首先根据 doc_id 删除旧的子图  await trio.to_thread.run_sync(    lambda: settings.docStoreConn.delete(      {"knowledge_graph_kwd": "subgraph", "source_id": doc_id}, search.index_name(tenant_id), kb_id    )  )
  # 然后插入新的子图  await trio.to_thread.run_sync(    lambda: settings.docStoreConn.insert(      [{"id": cid, **chunk}], search.index_name(tenant_id), kb_id    )  )
  return subgraph

关键步骤已经由注释标出,这里不再赘述。主要关注三点:

  1. 支持两种提取器,GeneralKGExt 和 LightKGExt,提取的步骤差不多(都是经过三步:首次抽取 -> 二次抽取 -> 判断是否抽取完毕),只是使用的提示词不一样而已;

  2. 子图是通过 NetworkX 库构建的,这是一种 Python 中常用的图论库,可以方便地创建、操作和分析图结构;

  3. 子图会序列化为 JSON 字符串,作为分块存到文档库中,可以在 ES 中通过 "knowledge_graph_kwd": "subgraph" 条件检索出来:

图片

感兴趣的可以看下这个 content_with_weight 字段,里面包含从文档中抽取出来的完整子图。

合并子图


上面一步生成的是文档级别的子图,接下来,将该子图合并到全局知识图谱中:​​​​​​​

async def merge_subgraph(tenant_id: str, kb_id: str, subgraph: nx.Graph, ...):
  # 检索旧的全局知识图谱  change = GraphChange()  old_graph = await get_graph(tenant_id, kb_id, subgraph.graph["source_id"])  if old_graph is not None:    # 如果旧图谱存在,则将文档子图合并到全局图谱中    new_graph = graph_merge(old_graph, subgraph, change)  else:    # 如果旧图谱不存在,则直接使用文档子图作为新的全局图谱    new_graph = subgraph    change.added_updated_nodes = set(new_graph.nodes())    change.added_updated_edges = set(new_graph.edges())
  # 计算 PageRank  pr = nx.pagerank(new_graph)  for node_name, pagerank in pr.items():    new_graph.nodes[node_name]["pagerank"] = pagerank
  # 保存新的全局图谱  await set_graph(tenant_id, kb_id, embedding_model, new_graph, change, callback)
  return new_graph
合并的逻辑比较简单,就是遍历文档子图中的所有节点和边,判断是否已经存在于全局图谱中,如果存在,就将 descriptionkeywordssource_id 等属性拼接到全局图谱中。此外,还会使用 NetworkX 的 pagerank() 方法 对合并后的图谱计算 PageRank 值,为每个节点添加 pagerank 属性,用于衡量节点的重要性。

PageRank 最初被设计为一种对网页进行排名的算法,在 NetworkX 中,是根据指向该节点的边的个数来计算节点的排名,表示该实体在知识图谱中的重要性。

开启实体消歧


实体消歧的逻辑位于 graphrag/entity_resolution.py 文件:​​​​​​​

class EntityResolution(Extractor):
  async def __call__(self, graph: nx.Graph, subgraph_nodes: set[str], ...) -> EntityResolutionResult:
    # 将节点按照实体类型分组    nodes = sorted(graph.nodes())    entity_types = sorted(set(graph.nodes[node].get('entity_type', '-') for node in nodes))    node_clusters = {entity_type: [] for entity_type in entity_types}    for node in nodes:      node_clusters[graph.nodes[node].get('entity_type', '-')].append(node)
    # 在同类型实体中生成所有可能的配对组合    candidate_resolution = {entity_type: [] for entity_type in entity_types}    for k, v in node_clusters.items():      candidate_resolution[k] = [        (a, b) for a, b in itertools.combinations(v, 2)         if (a in subgraph_nodes or b in subgraph_nodes) and self.is_similarity(a, b)      ]
    # 并发调用大模型进行批量消歧,大模型针对每一对实体输出明确的 Yes/No 判断    # 默认一批 100 对实体,最多并发 5 个任务    resolution_result = set()    async with trio.open_nursery() as nursery:      for candidate_resolution_i in candidate_resolution.items():        for i in range(0, len(candidate_resolution_i[1]), resolution_batch_size):          candidate_batch = candidate_resolution_i[0], candidate_resolution_i[1][i:i + resolution_batch_size]          nursery.start_soon(limited_resolve_candidate, candidate_batch, resolution_result, resolution_result_lock)
    # 将消歧结果构建成新的图谱    change = GraphChange()    connect_graph = nx.Graph()    connect_graph.add_edges_from(resolution_result)    async with trio.open_nursery() as nursery:      for sub_connect_graph in nx.connected_components(connect_graph):        merging_nodes = list(sub_connect_graph)        nursery.start_soon(limited_merge_nodes, graph, merging_nodes, change)
    return EntityResolutionResult(      graph=graph,      change=change,    )  

实体消歧所使用的提示词核心部分如下,主要是输出部分使用的一些特殊符号,方便程序解析结果:​​​​​​​

问题:在判断两个产品是否相同时,你应该只关注关键属性,忽略噪声因素。
演示 1: 产品A的名称是:"电脑",产品B的名称是:"手机" 不,产品A和产品B是不同的产品。问题 1: 产品A的名称是:"电视机",产品B的名称是:"电视"问题 2: 产品A的名称是:"杯子",产品B的名称是:"马克杯"问题 3: 产品A的名称是:"足球",产品B的名称是:"橄榄球"问题 4: 产品A的名称是:"钢笔",产品B的名称是:"橡皮擦"
使用产品的领域知识来帮助理解文本,并按以下格式回答上述4个问题:对于问题i,是的,产品A和产品B是同一个产品。或者 不,产品A和产品B是不同的产品。对于问题i+1,(重复上述程序)################输出:(对于问题 <|>1<|>,&&是&&,产品A和产品B是同一个产品。)##(对于问题 <|>2<|>,&&是&&,产品A和产品B是同一个产品。)##(对于问题 <|>3<|>,&&不&&,产品A和产品B是不同的产品。)##(对于问题 <|>4<|>,&&不&&,产品A和产品B是不同的产品。)##

生成社区报告


生成社区报告的逻辑位于 graphrag/general/community_reports_extractor.py 文件:​​​​​​​

class CommunityReportsExtractor(Extractor):
  async def __call__(self, graph: nx.Graph, callback: Callable | None = None):
    # 使用 Leiden 算法来发现图中的社区结构    # 将社区组织成一个多层级的树形结构,每个层级包含多个社区    communities: dict[str, dict[str, list]] = leiden.run(graph, {})
    # 遍历每一个社区,从图中提取当前社区中的所有实体和关系的描述,调用大模型生成社区报告    async with trio.open_nursery() as nursery:      for level, comm in communities.items():        logging.info(f"Level {level}: Community: {len(comm.keys())}")        for community in comm.items():          nursery.start_soon(extract_community_report, community)
    return CommunityReportsResult(      structured_output=res_dict,      output=res_str,    )       

整个流程比较简单,分为两步。第一步,使用 Leiden 算法 发现图中的社区结构。

在网络科学或图论中,社区(Community) 是指网络中的一组节点,其核心特征是:社区内部的节点之间连接紧密,而与社区外部节点的连接相对稀疏,这种 “内密外疏” 的结构是社区的核心标志,反映了网络中节点的聚类性和关联性。Leiden 算法是一种在图数据中识别社区结构的高效算法,由 Traag 等人在莱顿大学于 2018 年提出。它在经典的 Louvain 算法 基础上进行了改进,解决了 Louvain 算法中可能出现的 “分辨率限制” 和社区划分不精确的问题,因此在复杂网络分析中被广泛应用。

这里,RAGFlow 使用的是 graspologic 库的 hierarchical_leiden() 方法。

第二步,调用大模型为每个社区生成摘要,这被称为 社区报告(Community Report),报告以 JSON 格式输出:​​​​​​​

{  "title": <报告标题>,  "summary": <执行摘要>,  "rating": <影响严重性评级>,  "rating_explanation": <评级说明>,  "findings": [    {      "summary":<洞察1摘要>,      "explanation": <洞察1解释>    },    {      "summary":<洞察2摘要>,      "explanation": <洞察2解释>    }  ]}

包括以下几个部分:

  • 标题:代表其关键实体的社区名称,标题应简短但具体,如果可能,在标题中包含代表性的命名实体;

  • 摘要:社区整体结构的执行摘要,其实体如何相互关联,以及与其实体相关的重要信息;

  • 影响严重性评级:0-10 之间的浮点分数,表示社区内实体造成的影响严重程度;

  • 评级说明:对影响严重性评级给出一句话解释;

  • 详细发现:关于社区的 5-10 个关键洞察列表,每个洞察应有一个简短摘要,然后是根据下面的基础规则进行的多段解释性文本,要全面;

生成的社区报告可以在 ES 中通过 "knowledge_graph_kwd": "community_report" 条件检索出来:

图片

小结


在今天的学习中,我们深入探讨了 RAGFlow 中的知识图谱功能,我们详细了解了提取知识图谱的流程,包括:实体和关系的提取,子图的构建和合并,实体消歧和社区报告生成等。图谱生成成功后,知识库的配置页面会多出一个 “知识图谱” 的菜单项:

图片

通过引入知识图谱,RAGFlow 能在复杂多跳问答场景中表现得更加出色,特别是在分析具有复杂关系和实体的文档时。和昨天学习的 RAPTOR 一样,启用知识图谱功能需要大量的内存、计算资源和令牌,在使用时需要权衡利弊,建议提前在少量测试集上进行验证,只有当效果提升明显,才具有足够的性价比,才建议开启该功能。

 AI大模型从0到精通全套学习大礼包

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

​​在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 关于 RAGFlow 知识图谱 #### 架构概述 RAGFlow 的架构设计旨在支持灵活且高效的自然语言处理任务。特别地,GraphRAG 组件专注于通过集成多个大型语言模型(LLM)来实现知识图谱的创建与管理[^1]。 #### 实现细节 具体来说,GraphRAG 能调用不同类型的 LLMs 进行信息提取并构建相应的知识图谱。不过需要注意的是,由于各 LLM 在信息抽取方面的能力存在显著差异,这可能导致某些情况下生成的知识图谱准确或完整。当遇到此类问题时,用户可以通过内置的可视化工具审查所得到的知识图谱结构及其对应的对话逻辑,从而便于定位潜在的问题所在[^2]。 #### 使用场景探讨 现阶段,RAGFlow 主要应用于单个文档级别的知识图谱建立;这意味着它暂时不支持跨越多份文件之间的实体关系映射。尽管如此,这一局限性并未阻碍其广泛应用的可能性——例如,在客服机器人训练过程中,基于特定领域内的单一资料集快速搭建起有效的问答体系就是一个很好的例子。随着技术进步以及更多用户反馈意见的到来,未来版本有望引入更强大的功能以满足更加复杂的业务需求。 ```python # Python 伪代码展示如何加载预定义的数据源用于知识图谱构建 from ragflow import KnowledgeBase, GraphBuilder kb = KnowledgeBase.load('path/to/local/knowledgebase') graph_builder = GraphBuilder(kb) # 基于选定的 LLM 执行信息抽取并形成初步的知识图谱框架 initial_graph = graph_builder.extract_information_with_llm(llm_model='selected_LLM') # 利用图形界面工具查看当前状态下的知识图谱布局情况 visual_tool.show(initial_graph) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值