离散信号的卷积与相关

本文详细探讨了离散信号的一维和二维卷积与相关操作,包括scipy库和个人Python实现。内容涵盖卷积与相关的定义、计算公式、一维和二维卷积与相关的关系,以及在实际运算中pad 0的影响。同时指出,对称的卷积核将导致卷积和相关结果一致。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里的相关是指互相关。

1.一维离散信号的卷积与相关

计算模式为"full"

卷积:
f ( t ) ∗ g ( t ) = ∑ τ = − ∞ ∞ f ( τ ) . g ( t − τ ) \qquad f(t) * g(t)=\sum\limits_{\tau=-\infty}^\infty{f(\tau).g(t-\tau)} f(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

外卖猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值